
Chapter 1

EVOLVING SWARMING AGENTS IN REAL TIME

H. Van Dyke Parunak1
1Altarum Institute

Abstract An important application for population search methods (such as particle swarm
optimization and the several varieties of synthetic evolution) is the engineer-
ing problem of configuring individual agents to yield useful emergent behavior.
While the biological antecedents of population-based search operate in real time,
most engineered versions run off-line. For some applications, it is desirable to
evolve agents as they are running in the system that they support. We describe two
instances of such systems that we have developed and highlight lessonslearned.

Keywords: applications, real-time, emergence, agents, population-based search, evolution

1. Introduction

Research in the Emerging Markets Group of the Altarum Institute focuses on
practical applications of swarm intelligence. We1 is the result of the exploit the
emergent system-level behavior exhibited by interacting populations of fairly
simple agents to solve a wide range of real-world problems, including control
of uninhabited air vehicles (Parunak et al., 2002, Sauter et al., 2005), sensor
coordination (Parunak and Brueckner, 2003, Brueckner and Parunak, 2004),
resource allocation (Savit et al., 2002), information retrieval (Weinstein et al.,
2004), and prediction (Parunak et al., 2005), among others.

The central problem in engineering emergent behavior is determining the in-
dividual behaviors that will yield the required system-level behavior. The most

1The results described in this paper reflect the creative ideas and implementation skill of my colleagues,
including Rob Bisson, Steve Brophy, Sven Brueckner, Paul Chiusano, Jorge Goic, Bob Matthews, John
Sauter, Peter Weinstein, and Andrew Yinger.



2 GENETIC PROGRAMMING THEORY AND PRACTICE III

promising techniques that we have identified are those drawing on techniques
such as particle swarm optimization and various forms of synthetic evolution.
We describe these techniques collectively as population-based search (PBS),
since they use interactions among a population of searchers to solve a problem.
It is philosophically reinforcing to our basic approach, and perhaps not coinci-
dental, that these techniques themselves exemplify the emergent paradigm of
deriving global results from local interactions.

This paper emphasizes two aspects of this approach: the elements of the
population are individual agents rather than representations of the wholesystem,
and the evolution takes place in real time, while the system runs. The first
aspect has antecedents in the literature, but should be more widely explored.
The second appears to be novel.

In Section 2, we summarize some other examples of agent-centered evolu-
tion in order to provide a context for our methods. Sections 3 and 4 discuss
two examples from our work, using real-time agent-based evolution to solve
a Configuration problem and a Fitting problem, respectively. Section 5 draws
lessons from our experience and concludes.

2. Background

Evolutionary and particle swarm methods take their inspiration from natural
agents that adapt in the same temporal space in which they are born, live, and
die. Yet applications of these techniques differ from their metaphorical roots
in two ways. First, many applications have little to do with computational
agents, and instead focus on optimization of structures or functions that cut
across individual agents, even when the domain naturally lends itself to an
agent-based model. Second, even when PBS is applied to individual agents,
most applications execute in a temporal space distinct from that occupied bythe
agents. That is, the PBS is a planning or configuration process that determines
agent parameters off-line, for later deployment.

In this section we first distinguish agent-based applications from other ap-
proaches, then describe two broad uses of agent-based PBS, and consider some
previous work on real-time agent-based PBS.

Three Perspectives on PBS

It is useful to distinguish three different applications of PBS: structure op-
timization, function optimization, and agent optimization. While the three
categories can readily be mapped into one another, each suggests a particu-
lar perspective on the problem. For many engineering problems, the agent
perspective offers particular benefits.

Structure optimizationincludes spatial organization problems such as the
traveling salesperson problem (TSP), layout of VLSI chips, or designof me-



Evolving Swarming Agents 3

chanical mechanisms. It also includes problems of temporal organization such
as factory scheduling. Population-based search is typically applied to these
problems by constructing a population whose members are complete candidate
structures, and taking this approach encourages the practitioner to view the
structure holistically. Indeed, the value of PBS for such problems is largelyin
overcoming the tendency to local sub-optimization that results from traditional
mechanisms such as greedy search. Symbolic regression may be considered an
instance of structural optimization in which the structure being manipulated is
an abstract mathematical expression.

In function optimization, each member of the population is a vector that
constitutes an argument to some mathematical function, and the objective of
the search is to find a vector that yields a desired value for the function (such
as an extremum or an inflection point). Effective application of PBS to such
problems often requires adjustments to take advantage of the ordered nature of
the domain of each allele (Corne et al., 1999). Reduction of an engineering
problem to a mathematical function that needs to be optimized is the utmost in
abstraction. While such abstraction can help develop general solutions that are
applicable across multiple domains, it also makes it difficult to take advantage
of domain-specific heuristics, which may not readily be cast as closed-form
mathematical expressions.

Agent optimizationis a natural way to apply PBS to domains that are effec-
tively modeled as sets of interacting autonomous agents. These domains may
be engineered or natural.

Engineered domains that lend themselves to multi-agent modeling include
processing information from networks of sensors, coordinating the movement
of multiple vehicles, retrieving information from large collections of docu-
ments, and managing extended communication networks. Agent architectures
are particularly attractive for engineering problems when the domain consists
of discrete elements that are distributed in some topology, where central control
is difficult or impossible, and whose environment is changing dynamically (so
that adaptiveness is more important than reaching a steady-state optimum).

Natural domains that lend themselves to multi-agent modeling include many
biological systems, ranging from predator-prey ecologies and insect colonies
to human communities.

In both cases, the behaviors of these systems emerge from the interactions
of their parts, and a central problem in configuring them is determining the
behavior of individuals that will yield the desired overall system behavior. In
applying PBS from this perspective, each member of the population is a candi-
date for a single agent in the system. Taking an agent-centered perspective on
PBS aligns well with the natural modularity of such system.

Recently, agent-based mechanisms such as ant colony optimization (ACO)
have been applied to structure optimization (e.g., TSP and scheduling), and



4 GENETIC PROGRAMMING THEORY AND PRACTICE III

population search has been used to tune these mechanisms. It would seem most
natural to search over populations of individual agents (White et al., 1998).
However, these mechanisms include some system-wide parameters (such as
the number of agents used), and so population members are sometimes defined
at the level of the system rather than the individual agents (Botee and Bonabeau,
1998).

This latter approach violates the distinction between the individual agents
and their environment (Weyns et al., 2004), a distinction that is important from
the point of view of engineering effectiveness. On the one hand, it is usually
appropriate to consider issues such as the number of agents and the physics of
pheromone evaporation as part of the environment. Though they may emerge
from interactions among the agents, no single agent can change them. On the
other hand, deposit rates and sensitivity to different pheromones clearly pertain
to individual agents, and it makes sense to model them in the chromosomes
of each agent. If one wishes to explore the total space of both agent and
environmental variables, it would be cleaner to co-evolve the agents and the
environment as two different populations. (The whole area of engineering
environments for agents is quite new in the agent software community, and we
do not know of anyone who has explored the pros and cons of these alternative
ways of applying PBS to such systems.)

Varieties of the Agent Approach

We are not by any means the first to apply PBS to individual agents in order
to improve their collective behavior. Two areas where this approach has been
widely applied are robotics and biology.

Biologists use PBS (particularly its genetic varieties) retrospectively, in at
least two distinct ways.Ethologistsseek to discover possible processes by
which various animal behaviors have evolved. The actual behavior of the agent
is known, and in fact provides the standard against which the fitness of an
evolved agent is evaluated. Examples of work in this very large field include
the development of communications (Quinn, 2001, Steels, 2000), the evolution
of cooperation (Riolo et al., 2001), and the development of foraging (Panait and
Luke, 2004), to name only a few.Ecologistsare more concerned with the overall
patterns of interactions among multiple agents (e.g., food webs and population
dynamics), without so much focus on the individual behaviors. These examples
can be viewed as attempts to fit a model to observed agent and system behaviors,
respectively.

Roboticists have long used PBS prospectively, to find behaviors (equiva-
lently, control laws) that satisfy various functional requirements. A variety
of representations have been adopted for programming the behavior of these
agents, including GP-like higher-order operations (Brooks, 1992), tropistic ex-



Evolving Swarming Agents 5

ecution engines (Agah and Bekey, 1996), and neural networks (Harvey et al.,
1992). These examples can be viewed as configuration problems, seeking to
configure the agent’s behavioral engine to achieve desired outcomes.

Most of these instances run “off-line”. That is, the timeline within which the
PBS operates is disjoint from the timeline within which the system being studied
or designed operates. While ubiquitous among practitioners of PBS, off-line
search is at variance with the natural processes that inspired these mechanisms.
Our examples illustrate the potential of on-line search (conducted while the
system itself operates).

Examples of Real-Time PBS

A few examples of PBS have been published2 in which evolution takes place
as the system runs, and merit comparison with our approach.

Nordin and Banzhaf (Nordin and Banzhaf, 1997) use GP to evolve the con-
troller for a Khepera robot to improve its ability to avoid obstacles. The evolu-
tion runs as the robot operates, but the objective is to evolve a single algorithm
that can handle various inputs, not to vary the algorithm to accommodate envi-
ronmental changes. While the system is learning (40-60 minutes in one version,
1.5 in another), the robot does not successfully avoid obstacles. Dadone and
VanLandingham (Dadone and VanLandingham, 1999) take a similar approach
in evolving a controller for a chemical plant. Each member of the population
is given a chance to run the plant while its fitness is evaluated, and when every
member of the population has been evaluated, a new population is generated.
These systems deal only with a single entity (the robot or the controller), andare
not concerned with developing appropriate emergent behavior from a system
of agents.

Spector and colleagues (Spector et al., 2005) evolve the behaviors of apopu-
lation of simulated mobile entities living in 3-d space, whose behavior evolves
as they execute. They describe two systems. In one, the agents’ behavior is a
version of Reynolds’ flocking behavior (Reynolds, 1987), and the genotype is
a list of coefficients for the various vectors that are summed in that algorithm.
In the other, it is a program that yields a flocking algorithm. This work exhibits
emergent group behavior across the population of agents. However, that behav-
ior is achieved over the course of the run. The dynamics of the environment are
handled by the adaptive capabilities of the flocking algorithm that is evolved,
not the ongoing adaptation of that algorithm by evolution.

These examples are robotics applications. They develop control instructions
for robots, like the more common off-line applications of PBS, but do so fast

2We are grateful to participants in GPTP2005 and other reviewers for suggesting a number of examples, of
which these are illustrative.



6 GENETIC PROGRAMMING THEORY AND PRACTICE III

enough to be deployed on the robot as it executes. They both rely on adaptive
mechanisms in the evolved behavior to handle a changing environment, rather
than using evolution itself as the main adaptive mechanism.

Dynamic Flies (Boumaza and Louchet, 2001) is a vision processing algo-
rithm for obstacle avoidance. A population of points in three-space evolve tofit
their coordinates in the robot’s visual field to occupy the surfaces of obstacles.
The fitness function is based on the observation that the pixels in the vicinity
of a fly on a surface will vary relatively little from two different vantage points,
compared with the pixel neighborhoods of flies that are in free space. The flies
influence one another, in that the fitness is adjusted to penalize grouping. The
aggregate fitness of the flies in each cell of a square lattice that maps the robot’s
environment generates a repulsive field to guide the robot. This applicationis
like ours in both dimensions. It is truly emergent, generating a system-level be-
havior (obstacle avoidance) from the evolution of individual flies. Also,it uses
evolution as its adaptive engine. However, the individual flies, consistingonly
of the coordinates of a point in three-space and a fitness value, have nointrinsic
behavior, and fall below the threshold of what most researchers wouldconsider
an agent. While the application as a whole is robotic, the actual adaptation of
the flies to the surfaces of obstacles in the environment can be considereda
retrospective or fitting application of real-time PBS, since the flies are evolving
to provide a model of an exogenous feature of the environment.

The evolving entities in classifier systems (Booker et al., 1989) and artificial
immune systems (Forrest et al., 1997), unlike Dynamic Flies, do have (very sim-
ple) behaviors associated with them, and could be considered minimal agents.
These systems exhibit real-time PBS.

Li and colleagues (Li et al., 2000a)(Li et al., 2000b) evolve the strategies of
agents playing the minority game, a simple model of emergent market dynamics.
The agents’ fitnesses are evaluated as the game proceeds, but the population is
updated all at once every 10,000 time steps, rather than permitting each agent
to evolve asynchronously with respect to the others, as in nature.

3. A Configuration Application

The most direct application of PBS to swarming systems is finding con-
figurations of the individual agents so that their interactions yield the desired
system-level behavior. We illustrate this application in the context of ADAP-
TIV (Adaptive control of Distributed Agents through Pheromone Techniques
and Interactive Visualization), a system developed for planning flight paths
for uninhabited robotic vehicles (URV’s). This system uses a digital analog
of insect pheromone mechanisms to guide vehicles around threats and toward
targets.

Our implementation of digital pheromones has four components.



Evolving Swarming Agents 7

1 A distributed network ofplace agentsmaintains the pheromone field
and performs aggregation, evaporation, and diffusion. Each place agent
is responsible for a region of the physical space. In our simulation,
we tile the physical space with hexagons, each represented by a place
agent with six neighbors, but in principal both regular and irregular tiling
schemes can be employed. Place agents ideally are situated physically
in the environment using unattended ground sensors distributed over an
area and connected to their nearby neighbors through a wireless network.
They may also be located in a distributed network of command and control
nodes.

2 Avatars represent physical entities. Red avatars represent the enemy
targets and threats, while blue avatars represent friendly URVs. Blue
avatars are normally located on the robot vehicle. The name “Avatar” is
inspired by the incarnation of a Hindu deity, and by extension describes a
temporary manifestation (a software agent) of a persistent entity (a robot
vehicle).

3 Blue avatars createGhost agentsthat wander over the place agents looking
for targets and then continually building a path from the avatar to the
target. The avatars and ghosts all deposit pheromones at their current
locations.

4 Different classes of agents deposit distinctpheromone flavors. Agents
can sense pheromones in the place agent in whose sector they reside as
well as the neighboring place agents. The underlying mathematics of
the pheromone field, including critical stability theorems, is described in
(Brueckner, 2000).

Battlefield intelligence from sensors and reconnaissance activities causes
the instantiation of Red avatars representing known targets and threats. These
agents deposit pheromones on the places representing their location in the bat-
tlespace. The field they generate is dynamic since targets and threats can move,
new ones can be identified, or old ones can disappear or be destroyed.A blue
avatar representing a URV is associated with one place agent at any given time,
the place agent within whose physical territory the URV is currently located.It
follows the pheromone path created by its ghost agents.

Ghosts initially wander through the network of place agents, attracted to
pheromones deposited by targets and repelled by threat pheromones. Once
they find a target, they return over the network of place agents to the avatar,
depositing pheromones that contribute to building the shortest, safest path to
the target. The basic pheromone flavors areRTarget(deposited by a Red target
avatar, such as the Red headquarters),RThreat(deposited by a Red threat avatar,
such as an air defense installation),GTarget (deposited by a ghost that has



8 GENETIC PROGRAMMING THEORY AND PRACTICE III

encountered a target and is returning to its blue avatar, forming the path to the
target), andGNest(deposited by a ghost that has left the blue avatar and is
seeking a target).

A ghost agent chooses its next sector stochastically by spinning a roulette
wheel with six weighted segments (one for each of its six neighbors). The size of
each segment is a function of the strength of the pheromones and is designed to
guide the ghost according to the algorithm above. We experimented with several
different forms of the function that generates the segment sizes. Evolution of
such a form using genetic programming would in itself be a useful exercise.In
our case, manual experimentation yielded the form (for outbound ghosts):

Fn =
θ · RTargetn + γ · GTargetn + β

(ρGNestn + β)(Distn + ϕ)δ+α(RThreatn+1) + β

Fn is the resultant attractive force exerted by neighborn and Dist is the
distance to the target if it is known. Table 1-1 lists the tunable parameters in
the equation and the effect that increasing each parameter has on the ghost’s
behavior. Though this table provides general guidance to the practitioner, in
practice, the emergent dynamics of the interaction of ghost agents with their
environment makes it impossible to predict the behavior of the ghosts. Thus
tuning the parameters of this or any pheromone equation becomes a daunting
task. Even if a skilled practitioner were able to tune the equation by hand, the
system would still be impractical for end users who don’t think of their problem
in terms ofα, β, andγ. This observation led us to investigate the possibility of
using evolutionary methods to tune the parameters of the equation.

Table 1-1. Tunable Parameters and their Effects on Ghosts.

α Increases threat avoidance further from the target
δ Increases probability of ghosts moving towards a known target in the

absence of RTarget pheromone
γ Increases sensitivity to other ghosts
ρ Increases ghost exploration (by avoiding GhostNest pheromone)
θ Increases attraction to RTarget pheromone
β, φ Avoids divison by zero

We explored several PBS algorithms on the problem of defining ghost pa-
rameters, including three varieties of evolution strategies (ES) and a genetic
algorithm (GA). Details on these approaches and the scenarios on which they
were tested are described in our original paper (Sauter et al., 2002). In all cases,
ghosts have a fixed lifetime. Within this lifetime they first execute a search,
and then breed sexually until they die. Thus ghosts that complete their search



Evolving Swarming Agents 9

faster have longer to breed, and generate more offspring. The GA andone of
the ES approaches took account of threats that the ghost encounteredduring its
search, and the GA also rewarded the ghost for the value of the target that it
discovered. In all cases, as each ghost returns to the URV, it is evaluated and
selectively participates in generating subsequent generations of ghosts. Thus
the ghosts being emitted by the avatar are evolved in real time, as the system
runs.

One could envision evolving the parameters for the ghosts off-line. The
success of this approach would depend on the stability of the environment.
In the test examples reported here, the environment was static, and we were
exploring the speed with which the evolutionary process converged, andthe
resulting performance achieved. However, on different runs we gave the system
different scenarios, to which it developed distinct parameters. In a real-world
application, scenarios are not static, and a set of parameters evolved for one
scenario would not function well on another. By adapting the parameters in
real time, we can accommodate dynamic changes in the environment.

Figure 1-1 shows the performance of the system, measured by the strength
of the GTarget pheromone adjacent to the avatar (and thus available to guide it).
The left-hand plot shows two benchmarks. The “Hand Tuned” line showsthe
behavior of a set of parameters derived by manual experimentation. The“Ran-
dom” line shows the behavior when ghosts are generated with small random
excursions around the hand tuned values.

Figure 1-1. Performance of PBS on path planning. Left: comparison of ES’s on Two Target
scenario. Right: comparison of Strength ES on various scenarios, andGA on Two Target
scenario.

The left-hand plot shows that all three versions of the ES outperformed the
hand tuned and random configuration by an order of magnitude. The Strength
ES takes into account the damage suffered by the ghost in simulated encounters
with threats, and while it takes longer to converge, it outperforms the other ES



10 GENETIC PROGRAMMING THEORY AND PRACTICE III

approaches on a wider range of scenarios. The slight superiority of the random
to the hand tuned configuration is an interesting illustration of the value of
stochasticity in breaking symmetries among swarming agents and permitting
more effective exploration of the environment.

The right-hand plot compares the Strength ES on four different scenarios
with the GA on one of them.

This system has striking similarities with the Dynamic Flies system, though
each was developed without knowledge of the other. In both cases, interacting
entities continuously evolve under the influence of the environment, and gen-
erate a field that guides the movement of a physical vehicle. Table 1-3 makes
this comparison explicit.

Table 1-3. Comparison of ADAPTIV and Dynamic Flies.

Feature ADAPTIV Dynamic Flies
Entities Ghosts Flies
Environmental Influences Targets and Threats Obstacles
Generated Field GTarget pheromone Aggregate Fly fitness
Physical Agent URV Robot

The systems differ in their specificity and their dynamics. Both of these
differences reflect the distinction between ADAPTIV’s ghosts (which are real,
though simple, agents, with autonomous behaviors) and the flies (which are
simply the coordinates of points in three-space).

Specificity.—Dynamic Flies specifically supports processing of stereo
vision for obstacle detection. The only output from the flies to the rest
of the system is their fitness, linking the evolutionary process directly
to the obstacle avoidance behavior. In ADAPTIV, evolution adjusts the
characteristics of the ghosts, whose impact on the rest of the system is
through a digital pheromone that is part of a larger pheromone vocabulary.
Thus a ghost has a richer set of inputs than a fly (including not only
pheromones from targets and obstacles but also pheromones from other
ghosts), and the system can reason about attractors as well as repellers.

Dynamics.—The Dynamic Flies system has no memory. A fly repels
the vehicle only while it is actually at a location, and only in proportion
to its current fitness. This feature is appropriate for the specific obstacle
avoidance application for which the system is designed. The ADAPTIV
architecture supports more general geospatial reasoning, including the
need to maintain a memory of a threat or target that may not currently
be visible. Because pheromones are distinct from the agents that deposit



Evolving Swarming Agents 11

them, they can persist in a location after the agent has moved on, or
they can vanish almost immediately, depending on the setting of the
evaporation rate associated with a given pheromone flavor.

4. A Behavior Fitting Application

Our second example addresses the problem of predicting the future behavior
of soldiers in urban combat, based solely on their observed past behavior. We
assume that an individual soldier’s behavior is a function of his3 individual
personality as well as his interactions with other soldiers and with the urban
environment. Prediction in this highly nonlinear system merits comparison with
prediction in nonlinear systems without the social and psychological aspects of
combat (Kantz and Schreiber, 1997). The general approach in suchsystems is
to extrapolate future behavior using functions fitted to the recent past. While
the nonlinear nature of the systems may lead to divergence of trajectories over
time, continuously refreshing the fit and limiting the distance of the projection
into the future can yield useful predictions (Figure 1-2).

Figure 1-2. By constantly updating a fit of the system’s trajectory through state space on the
basis of the recent past (a), one can generate useful predictions a short distnce into the future (b).

Historically, this approach has been applied to systems that can be described
analytically, permitting a functional form to be fit to recent behavior. We have
extended this approach to entities, such as soldiers, whose behavior cannot
readily be fit using analytical techniques. The basic approach is to represent
the entity by a software agent whose behavioral parameters are fit usingPBS.
We call this approach “Behavioral Emulation and Extrapolation,” or BEE.

BEE must operate very rapidly, in order to keep pace with the ongoing
evolution of the battle. Thus we use simple agents coordinated using pheromone
mechanisms similar to those described in our configuration example.

3We use the masculine gender generically.



12 GENETIC PROGRAMMING THEORY AND PRACTICE III

Figure 1-3 explains BEE further. Each active entity in the battlespace has an
avatar that continuously generates a stream of ghost agents representing itself.
The ghosts’ behavioral parameters are selected from distributions to explore
possible intentions of the entity they represent. Thus BEE mimics at the agent
level the nonlinear track analysis outlined in Figure 1-2.

Ghosts live on a timeline indexed byτ that begins in the past at the insertion
horizon and runs into the future to the prediction horizon. The avatar inserts
the ghosts at the insertion horizon. The ghosts representing different entities
interact with one another and with the terrain. These interactions mean that their
fitness depends not just on their own actions, but also on the behaviors of the
rest of the population, which is also evolving. Becauseτ advances faster than
real time, eventuallyτ = t (actual time). At this point, the ghosts are evaluated
based on their locations compared with the entity represented by their avatar.

The fittest ghosts have two functions. First, they are bred and their offspring
are reintroduced at the insertion horizon to continue the fitting process. Second,
they are allowed to run past the avatar’s present into the future. Each ghost that is
allowed to run into the future explores a different possible future of the battle,
analogous to how some people plan ahead by mentally simulating different
ways that a situation might unfold. Analysis of the behaviors of these different
possible futures yields predictions.

This entire process runs continuously, in real time, as the system monitors
the environment. Ghosts are evolving against the world as its state changes.
As in the Dynamic Flies system, the evolution of the swarming agents is what
enables them to track a dynamic environment. Unlike the Dynamic Flies,
but like ADAPTIV, the output of the ghosts in BEE is not an immediate by-
product of the evolutionary process (the fitness of the agents), but a second-order
phenomenon produced by the agents (their behavior as they run into the future).

The personality of each ghost includes four categories of information, all
represented as scalars (Parunak et al., 2005).

1 Desiresare anticipated future state of the world toward which the agent is
positively disposed. We have defined a basic set of desires relevant tothe
combat scenario. An agent’s goals are considered to be stable over the
time horizon that we are considering. They may be mutually exclusive,
since they have no effect on an agent’s actions until they are instantiated
as goals in the face of environmental information. A desire might be
“occupy key sites.”

2 Goals are selected by the agent from among its desires based on its
current state and recent history, and it chooses its actions in an effortto
accomplish the goals. Unlike desires, the set of goals held by an agent at a
given time are believed by the agent to be consistent with one another, and
may change over the time horizon of the battle. A goal instantiated from



Evolving Swarming Agents 13

Figure 1-3. Behavioral Emulation and Extrapolation. Each avatar generates a streamof ghosts
that sample the personality space of the entity it represents. They are evolved against the observed
behavior of the entity in the recent past, and the fittest ghosts then run into thefuture to generate
predictions.

the “key sites” desire might be “occupy building 34 by time = 1520.” The
agent continually reviews its goals to ensure their consistency with the
current state of the world. If it discovers that two goals are inconsistent
with one another, it will drop at least one of them.

3 Emotionsare defined following the OCC model (Ortony et al., 1988) as
“valenced reactions to events, agents, or objects.” Emotions vary based
on the events, agents, or objects that the agent experiences, and modulate
its analysis of which goals to instantiate over time. For example, an event
of being attacked will raise the level of an agent’s fear emotion.

4 Dispositionsreflect an agent’s tendency to adapt a given emotion. For
example, an agent with a high level of the “cowardice” disposition will
experience a faster rate of increase of fear in the presence of an attack than
an agent with a low level of this disposition. Dispositions are assumed
to be constant over the time horizon in question.

Figure 1-4 shows how these four personality elements interact with one
another and with environmental stimuli to generate the agent’s behavior.

This system has been tested in a series of realistic wargaming experiments
in which the actions of the red and blue fighters were directed by experienced



14 GENETIC PROGRAMMING THEORY AND PRACTICE III

Figure 1-4. Desires, beliefs, dispositions, and emotions generate an agent’s basic behaviors in
response to environmental stimuli.

military commanders. While the results of these experiments have not yet been
released for publication, BEE was successful in detecting which units were
being played to exhibit specified dispositions.

5. Discussion and Conclusion

These applications are both instances of agent-centered PBS. The configura-
tion problem is directly comparable to the many applications of PBS to robotic
configuration, while the fitting problem can be compared to biological studies
that seek to understand existing behavior in the natural world.

What sets these applications apart from most others is their real-time nature.
In many instances of PBS, the entire population is synchronized. Even when
the focus of search is the single agent rather than the system as a whole, itis
common to update all agents at the same time, replacing the entire population
at each generation. In our approach, breeding occurs in parallel withthe eval-
uation of the ghosts. In the configuration example, only 1% of the population
is replaced in each generation. Since the evaluation of an individual can take
100 - 300 time steps (the round trip distance with room for wandering), forcing
a complete evaluation cycle before breeding would have slowed down the al-
gorithm considerably. Similarly, in the fitting example, ghosts are continually
compared with the behavior of the entities they represent as the battle unfolds,
and breeding affects only a small fraction (about 3%) of the ghosts at each time
step. By changing only a fraction of the population at each time step, we leave
the bulk of the agents to carry on the work that the system is intended to do
and avoid catastrophic shifts due to maladaptive individuals. At the same time,



Evolving Swarming Agents 15

we limit the ability of the system to respond rapidly to catastrophic exogenous
events, a weakness to which natural real-time evolution is not immune.

It is common in agent-centered PBS to evaluate the fitness of an individual
in isolation, or in a tournament where individuals from separate populations
compete with each other. In our examples, the ghosts are part of a mixed
population. Each of them is depositing pheromones and reacting to pheromones
in a common environment. Thus, unfit individuals are depositing pheromones
in the same environment being sensed by fit individuals, potentially causing
the fit individuals to score lower than they would otherwise. This fact initially
concerned us. We weren’t sure whether PBS would even work underthose
circumstances. However, this particular problem appears to have a number of
reasonable solutions, so the effect of having a mixed population did not prevent
the algorithms from identifying and rewarding the better individuals.

Three details of our approach make it possible to apply PBS in real time.

1 Real-time PBS is facilitated by an agent-centric approach so that some
components of the system can be modified while others carry on the
system’s work.

2 This approach is realistic only with populous systems, so that the effect
of a change in a single agent do not discontinuously change the dynamics
of the whole system. We know empirically that the systems described in
this paper can function with populations on the order of 100 and more,
but we have not systematically explored the lower bound.

3 Agents should be light-weight, so that multiple copies can be executed
fast enough to keep up with the real world. We have found that the digital
pheromone model, using simple functions to combine the pheromones
sensed by the agent in its environment, is efficient enough to support tens
of thousands of agents concurrently, thus providing both the population
sizes and repeated cycles needed for effective evolution while keeping
pace with real time.

Our experiments show that it is feasible to evolve a complex system in real
time, element by element, rather than in a planning step that is temporally dis-
continuous with the system’s operation. This approach opens new opportunities
for applying PBS to dynamically changing systems that do not lend themselves
to lengthy planning cycles.

References

Agah, A. and Bekey, G.A. (1996). A genetic algorithm-based controller for
decentralized multi-agent robotic systems. InThe 1996 IEEE International
Conf. on Evolutionary Computation, pages 431–436, Nagoya, Japan. IEEE.



16 GENETIC PROGRAMMING THEORY AND PRACTICE III

Booker, L. B., Goldberg, D. E., and Holland, J. H. (1989). Classifier systems
and genetic algorithms.Artificial Intelligence, 40:235–282.

Botee, Hozefa M. and Bonabeau, Eric (1998). Evolving ant colony optimization.
Adv. Complex Systems, 1:149–159.

Boumaza, Amine M. and Louchet, Jean (2001). Dynamic flies: Using real-
time parisian evolution in robotics. In Boers, Egbert J. W., Cagnoni, Stefano,
Gottlieb, Jens, Hart, Emma, Lanzi, Pier Luca, Raidl, Gunther R., Smith,
Robert E., and Tijink, Harald, editors,Applications of Evolutionary Com-
puting, volume 2037 ofLNCS, pages 288–297, Lake Como, Italy. Springer-
Verlag.

Brooks, Rodney A. (1992). Artificial life and real robots. In Varela,Francisco J.
and Bourgine, Paul, editors,The First European Conference on Artificial Life,
pages 3–10.

Brueckner, Sven (2000).Return from the Ant: Synthetic Ecosystems for Manu-
facturing Control. Dr.rer.nat., Humboldt University Berlin.

Brueckner, Sven A. and Parunak, H. Van Dyke (2004). Swarming distributed
pattern detection and classification. In Weyns, Danny, Parunak, H. VanDyke,
and Michel, Fabien, editors,Workshop on Environments for Multi-Agent
Systems (E4MAS 2004), volume LNAI 3374, New York, NY. Springer.

Corne, D., Dorigo, M., and Glover, F., editors (1999).New Ideas in Optimisa-
tion. McGraw-Hill, New York.

Dadone, P. and VanLandingham, H.F. (1999). Adaptive online parameter tun-
ing using genetic algorithms. InProceedings of WSC4: 4th Online World
Conference on Soft Computing in Industrial Applications.

Forrest, S., Hofmeyr, S., and Somayaji, A. (1997). Computer immunology.
Communications of the ACM, 40:88–96.

Harvey, I., Husbands, P., and Cliff, D. (1992). Issues in evolutionary robotics.
In Meyer, J-A, Roitblat, H, and Wilson, S, editors,The Second International
Conference on Simulation of Adaptive Behaviour (SAB92), pages 364–373.

Kantz, Holger and Schreiber, Thomas (1997).Nonlinear Time Series Analysis.
Cambridge Nonlinear Science Series. Cambridge University Press, Cam-
bridge, UK.

Li, Yi, Riolo, Rick, and Savit, Robert (2000a). Evolution in minority games. i.
games with a fixed strategy space.Physica A, 2000(276):234 – 264.

Li, Yi, Riolo, Rick, and Savit, Robert (2000b). Evolution in minority games ii.
games with variable strategy spaces.Physica A, 2000(276):265 – 283.

Nordin, P. and Banzhaf, W. (1997). Real time control of a khepera robot using
genetic programming.Cybernetics and Control, 26(3):533–561.

Ortony, A., Clore, G.L., and Collins, A. (1988).The cognitive structure of
emotions. Cambridge University Press, Cambridge, UK.

Panait, Liviu A. and Luke, Sean (2004). Learning ant foraging behaviours.
In Pollack, Jordan, Bedau, Mark, Husbands, Phil, Ikegami, Takashi,and



Evolving Swarming Agents 17

Watson, Richard A., editors,Artificial Life XI Ninth International Conference
on the Simulation and Synthesis of Living Systems, pages 575–580, Boston,
Massachusetts. The MIT Press.

Parunak, H. Van Dyke, Bisson, Robert, Brueckner, Sven, Matthews, Robert, and
Sauter, John (2005). Representing dispositions and emotions in simulated
combat. In Thompson, Simon, Ghanea-Hercock, Robert, Greaves, Mark,
Meyer, Andre, and Jennings, Nick, editors,Workshop on Defence Applica-
tions of Multi-Agent Systems (DAMAS05, at AAMAS05), page (forthcoming),
Utrecht, Netherlands.

Parunak, H. Van Dyke and Brueckner, Sven (2003). Swarming coordination
of multiple UAV’s for collaborative sensing. InSecond AIAA "Unmanned
Unlimited" Systems, Technologies, and Operations Conference, San Diego,
CA. AIAA.

Parunak, H. Van Dyke, Purcell, Michael, and O’Connell, Robert (2002). Dig-
ital pheromones for autonomous coordination of swarming UAV’s. InFirst
AIAA Unmanned Aerospace Vehicles, Systems,Technologies, and Operations
Conference, Norfolk, VA. AIAA.

Quinn, M. (2001). Evolving communication without dedicated communication
channels. In Kelemen, J. and Sosik, P., editors,Advances in Artificial Life:
Sixth European Conference on Artificial Life: ECAL2001, pages 357–366,
Prague, Czech Republic. Springer.

Reynolds, Craig W. (1987). Flocks, herds, and schools: A distributedbehavioral
model.Computer Graphics, 21(4):25–34.

Riolo, Rick L, Axelrod, Robert, and Cohen, Michael D. (2001). Evolution of
cooperation without reciprocity.Nature, 414(22 Nov):441–443.

Sauter, John A., Matthews, Robert, Parunak, H. Van Dyke, and Brueckner,
Sven (2002). Evolving adaptive pheromone path planning mechanisms. In
Autonomous Agents and Multi-Agent Systems (AAMAS02), pages 434–440,
Bologna, Italy.

Sauter, John A., Matthews, Robert, Parunak, H. Van Dyke, and Brueckner,
Sven A. (2005). Performance of digital pheromones for swarming vehicle
control. InFourth International Joint Conference on Autonomous Agents and
Multi-Agent Systems, page (forthcoming), Utrecht, Netherlands.

Savit, Robert, Brueckner, Sven A., Parunak, H.Van Dyke, and Sauter, John
(2002). Phase structure of resource allocation games.Physics Letters A,
311:359–364.

Spector, Lee, Klein, Jon, Perry, Chris, and Feinstein, Mark (2005).Emergence
of collective behavior in evolving populations of flying agents.Genetic Pro-
gramming and Evolvable Machines, 6. Prepublication Date: 6 August 2004.

Steels, L. (2000). The puzzle of language evolution.Kognitionswissenschaft,
8(4):143–150.



18 GENETIC PROGRAMMING THEORY AND PRACTICE III

Weinstein, Peter, Parunak, H. Van Dyke, Chiusano, Paul, and Brueckner, Sven
(2004). Agents swarming in semantic spaces to corroborate hypotheses.In
AAMAS 2004, pages 1488–1489, New York, NY.

Weyns, Danny, Parunak, H. Van Dyke, Michel, Fabien, Holvoet, Tom, and
Ferber, Jacques (2004). Multiagent systems, state-of-the-art and research
challenges. In Weyns, Danny, Parunak, H. Van Dyke, and Michel, Fabien,
editors,Workshop on Environments for Multi-Agent Systems (E4MAS 2004),
volume LNAI 3374, New York, NY. Springer.

White, Tony, Pagurek, Bernard, and Oppacher, Franz (1998). ASGA: Improv-
ing the ant system by integration with genetic algorithms. In Koza, John R.,
Banzhaf, Wolfgang, Chellapilla, Kumar, Deb, Kalyanmoy, Dorigo, Marco,
Fogel, David B., Garzon, Max H., Goldberg, David E., Iba, Hitoshi, and
Riolo, Rick, editors,Genetic Programming 1998: Proceedings of the Third
Annual Conference, pages 610–617, University of Wisconsin, Madison, Wis-
consin, USA. Morgan Kaufmann.




