Annals of Operations Research 75 (1997) 69-101 (Special I1ssue on Artificial Intelligence and Management Science)

“Go to the Ant”: Engineering Principles from Natural Multi-Agent
Systems
H. Van Dyke Parunak (van.parunak@altarum.org)
+1 734 302-4684 (voice), +1 734 302-4991 (fax)
Altarum Institute
3520 Green Court, Suite 300
Ann Arbor, M1 48105-1579, USA

Abstract

Agent architectures need to organize themselves and adapt dynamicaly to changing circumstances without
top-down control from a system operator. Some researchers provide this capability with complex agents that
emulate human intelligence and reason explicitly about their coordination, reintroducing many of the problems
of complex system design and implementation that motivated increasing software locdizetion in the first place.
Naturdly occurring systems of simple agents (such as populations of insects or other animals) suggest that this
retregt is not necessary. This paper summarizes severa studies of such systems, and derives from them a set of
generd principlesthat artificid multi-agent systems can use to support overal system behavior significantly
more complex than the behavior of the individuas agents.

1. Introduction
Table 1 shows that the history of software is one of increasing localization and encapsulation.

Originaly, the basic unit of software was the complete program. Arbitrary jumps of control made it difficult to
manipulate any unit other than theindividua line of code and the entire program. Data often occupied the same
deck of cards as the program, and the entire deck, code and program, was the responsibility of the
programmer, who thus determined the behavior of the complete program before it began execution.

The “gructured programming” movement designed programs from smaller packages of code, such as
structured loops and subroutines, with a high degree of locd integrity. Though a subroutine' s code was
encapsulated, its state had to be supplied externdly through arguments, and it gained control only when
externaly invoked by acdl.

The next generation was object- oriented programming, which locdized not only a segment of code but aso
the variables manipulated by that code. Origindly, objects were passive, and gained control only when some
externa entity sent them a message.

Table 1: Increasing Softwar e L ocalization

Monolithic Structured Object-Oriented | Agent-Oriented
Program | Programming | Programming | Programming

How does a unit External Local Local Local
behave? (Code)
What does a unitdo | External External Local Local
when it runs?
(State)
When does a unit External External External Local (rules;
run? (called) (message) goals)

3/5/2001 10:52 AM

Copyright © 1996, CEC/ERIM. All Rights Reserved.

Page 1

Parunak: “ Go to the Ant”

The next step, software agents, gives each object its own thread of control and its own internd godss, thus
locdlizing not only code and data, but aso invocation. Such an “active object with initiative’ isthe most basic
manifestation of a software agent, sometimes cdled an “ autonomous agent” to emphasize that it does not need
externa invocation, or a*“responsible agent” to emphasize that it watches out for its own set of interna
repongbilities. With code, state, and control dl locaized within the agent, little or no integration is required to
launch an gpplication. In the ultimate agent vison, the application developer smply identifies the agents desired
in the fina gpplication, and they organize themsdves to perform the required functiondity.

Such an approach to software has many advantages over traditional top-down techniques. The behavior
gpace of the entire system is much larger than could be developed with traditiona techniques: one hundred
agents, each with ten behaviors, require the programming of only 1000 individua behaviors, yet provide a
behavior space on the order of 10", anumber far larger than the total number of eementary particlesin the
universe. Integration and maintenance cogts, traditiondly two of the largest expensesin developing a software
system, are greetly reduced. There is evidence that interacting systems of agents can provide adaptability and
robustness only dreamed of in conventiond systems.

The appeal of agent architectures depends on the ability of populations of agents to organize themsdves and
adapt dynamically to changing circumstances without top-down control from a programmer or system
operator. This clam at first blush appears incredible, and some researchers hedge their bets by designing
complex agents that emulate humant-level intelligence and that can reason explicitly about their coordination
with one another. Such an gpproach reintroduces many of the problems of complex system design and
implementation that drove the evolution of increasing software locdization in the first place. Naturaly occurring
systems of Smple agents (such as populations of insects or other animals) offer evidence that this retreet is not
necessary. This paper summarizes anumber of studies of such systems, and absiracts from them a set of
generd design principles that can be applied to artificia agent-based systems in which the behavior of the
whole is sgnificantly more complex than that of any of the individuals.

Any effort to compare software agents with entities in the natural world must take account of some
fundamental differences between these two classes of objects. Section 2 develops aforma definition of
“agent” that covers both cases, points out the smilarities and differences between them, and draws some
preliminary conclusions about applying software agentsin physical contexts. Section 3 develops severd
examples of naturaly occurring multi-agent systems. On the basis of these examples, Section 4 proposes
seven principles that can hep design artificia systems of fine-grained agents with emergent systematic
behavior. Section 5 discusses how such principles can be evaluated for deployment in real-world applications.

2. Theoretical Context

A disciplined comparison between natura agent systems such as ant colonies and systems of computerized
agents depends on amode of agenthood that is sufficiently generd to cover both cases. Congiructing such a
common model shows usimportant points of difference between the two domains, differences that we must
take into account in engineering effective multi-agent systems.

A fundamentd insight is that agents cannot be consdered independently of the environment in which they exist
and through which they interact [MUler 1996]; [Ferber & Muller 1996]. Thisingght is often ignored in work
on computational multi-agent systems, where researchers consider the environment as a passive
communications framework and everything of interest is relegated to one or another of the agents. Even such
purely eectronic environments often prove embarrassingly active when an gpplication is scaled up for red-
world use, and those engineering agents for non-electronic domains (such as factory automation) must

3/5/2001 10:52 AM Copyright © 1996, CEC/ERIM. All Rights Reserved. Page 2

Parunak: “ Go to the Ant”

congder the environment explicitly. So we begin by defining a Multi- Agent System as athree-tuple: a st of
Agents, an Environment, and a Coupling between them:

MAS = <Agents, Environment, Coupling>

2.1 Agents
Each agent isafour-tuple:

Agents = {Agent;, ..., Agent,}
Agent; = <Sate, Input;, Output;, Process>

State isa st of vauesthat completely define the agent. The structure, domains, and variability of these
vaues are not congtrained by this definition, and differences in these features are responsible for much of
the interesting variation among different kinds of agents.

Input; and Output; are subsets of State, whose variables are coupled (in away to be defined more
specificaly below) to the environment. We will occasondly spesk of an agent’ s sensors and effectors.
These are mechanisms that implement the coupling between the environment and the agent’s Input and
Output variables, respectively.

Process is an autonomoudy executing mapping that changes the agent’s State. “ Autonomoudy executing”
means that the Process runs without being invoked from any outside entity. In computationa terms, an
agent hasits own virtua CPU.

The existence of Input and Output imply that an agent is a bounded process, and Input and Output crossthis
boundary. Input and Output relate the agent immediately to the environment, and only mediately (through the
environment) to other agents.

2.2 Environment
Environment is atwo-tuple that is syntecticaly a subset of an agent:

Environment = < Sate,, Process>

The important festure of this definition of the environment is that the environment itsef isactive. It hasitsown
Process that can change its State, independent of the actions of its embedded agents.

Input; and Output; of the various agents are coupled to dements of State,, but the environment does not
distinguish which dements of State, are so coupled. That distinction depends on the agents that exist at any
moment and the capabiilities of their sensors and effectors. The lack of adistinguished Input and Output means
that the environment, unlike an agent, is unbounded. The fact that environment, like agent, has State and
Process means that putting a boundary and associated Input and Output values around an environment (and its
associated agents) yields a higher-level agent. Thusthis modd lends itsdlf naturdly to aggregating low-leve
agentsinto higher-level ones.

3/5/2001 10:52 AM Copyright © 1996, CEC/ERIM. All Rights Reserved. Page 3

Parunak: “ Go to the Ant”

2.3 Modeling State and Process

The exact nature of the coupling depends on how we modd State and Process. Table 2 summarizes two
approaches that have been taken.*

Table 2: Two Modelsof State and Process

Model Discrete-Event Dynamical Systems | Time-Based Dynamical Systems
State Discrete (symbols) Continuous (real numbers)
Processing Symbol manipulation, e.g., Partial differential equations or

-- Rewrite rules difference equations

-- Transition tables
Progress Discrete; event-based Discrete (integer time) or

Continuous (real time)

Time & State Independent (clock speed) Coupled (physical laws)
Communities Computer Science, Al Physics, Mathematical Ecology

Computer scientigts, particularly those with a background in symbolic computation (asin atificid inteligence),
naturally mode systems as though their dynamics were governed by discrete events. Canonical modes of such
systems include rewrite grammars and automata driven by trangtion tables (such as afinite-state automaton or
a Turing machine). Such a system legps ingantaneoudy from one discrete sate to another on the basis of
events that are not necessarily anchored to a numerica time parameter. As aresult, thereisno intringc
coupling between numericaly vaued time and the sate of the modd. The system yields the same result when
run on afast computer as on adow one, and only an outside observer with access to a real-time clock can tell
the difference.

Students of the naturd sciences naturdly moded systems as time-based dynamica systems, in which gate
variables can be real numbers and thus vary continuoudly, and in which the progress of the system is based not
on the sequence of a series of events, but on anumerical time parameter. In such a system, processing speed
isintimately linked to the physics of the domain, and any attempt to change the “clock speed” of the process
can be expected to change the qualitative behavior of the system.

It can be argued that the most gppropriate mode to use for a system depends on the level of andysis. A digital
computer, for example, is built on time-based continuous quantum wave functions at the subatomic leve.
When one movesto the level of holes and free eectrons in a semiconductor, a discrete-event modd ismore
appropriate, and continues to dominate through the leve of gates, logic circuits, and program execution.
However, it becomes inefficient to consder the State space of avery large network of computers as discrete,
and time-based modd s with continuous state sometimes emerge for andyzing such systems.

Most work on atificid agents identifiesitsdf with the artificid intelligence community, which views the problem
of building an agent as one of atificia cognition. Al “orthodoxy” advocates the Physica Symbol System
hypothesis, classicaly expounded by [Simon 1981], which assarts that a cognitive system is a discrete-event
dynamica system.? Asaresult of this orthodoxy, most research on agents takes a discrete-event approach to

1| am indebted to my colleague A.D.Baker for helpful discussions on the relation between agent theory and
systems enginesring.

2 Recently, [Port & vanGelder 1995] have articulated the view of asmall but growing group of researchers
who assart that cognition is atime-based dynamica system. For purposes of contrast with the Physica
3/5/2001 10:52 AM Copyright © 1996, CEC/ERIM. All Rights Reserved. Page 4

Parunak: “ Go to the Ant”

modeling agents (and the environment, if the reseercher mode st explicitly at dl). By contrast, most
researchers who focus their attention on the environments (other than computationd) in which agents must
perform use time-based model's, and these model s a so dominate discussions of the interna dynamics of lower
life-forms such as ants and termites.

2.4 Coupling

An undergtanding of the coupling between agent and environment must consider four cases, corresponding to
the interacting digtinctions { Discrete- Event, Time-Based} x { Agent, Environment}. The Smplest cases are
when the dynamics of both agent and environment are modeled the same way (a Situation we describe as
homodynamic). Additional complications arise when the system is heterodynamic, with discrete-event
dynamics for one dement and time-based dynamics for another.

2.4.1 Homodynamic Systems

When both agents and environment are discrete-event, the coupling of Input; and Output; to State, isSmply a
mapping of registers from environment to agent or vice-versa. This modd, which dominates artificia agent
research today, leads to an (unredidtic) identity between an agent’s actions and the resulting change in the
environment, which in turn contributes to classcal Al conundrums such as the Frame Problem [Ferber &
Muller 1996].

When both agents and environment are time-based, asin most research on mathematical ecology, the coupling
takes the form of an energy flow. Because the Sate values can vary continuoudy, the change in avarigble
resulting from such aflow may be infinitesma, depending on the Process in the receiving entity and the other
energy flowsin the system. Because we modd al agent interactions through the environment, an agent can
individualy determine its next state, based on the flows it senses from the environment. However, no sngle
agent can predict the effect of its actions on the environment, because these will depend on the actions of other
agents as well.

2.4.2 Heterodynamic Systems

In engineering artificia agents for red-world applications, the agents are discrete-event and the environment is
time-based. In this case the coupling is even more complicated. In addition to a mapping between the state
spaces of agent and environment, the agent’ s sensors must provide an energy Sink and an andog-to-digitd
converson to respond to energy flows from the environment, and its actuators must provide an energy source
and a digita-to-analog conversion in order to provide energy flows to the environment.

When the agents are time- based and the environment is discrete-event, the role of the agent’s sensors and
actuatorsis reversed: asensor isnow aD-A energy source, and an actuator is now an A-D energy sink. This
particular combination of agent and environment has not been extensively explored. Ergonomic studies of how
humans interact with computers may point the way to such investigations, but people who work with
computers often do so in the role of symbol processors themsaves, thus masking the more difficult questions
of how the two modd's of State and Process interface.

Symbol System hypothesis, they call their approach the Dynamica System Hypothesis. This moniker, while
memorable, is alittle mideading, Snce both gpproaches use dynamicd (that is, Sate-based) systems.

3/5/2001 10:52 AM Copyright © 1996, CEC/ERIM. All Rights Reserved. Page 5

Parunak: “ Go to the Ant”

3. Natural Agent Systems

Each example in this section consders the desirable system behavior that emerges from the overal
community, reviews theindividual responsibilities of the agentsin the system that yield this overal behavior,
and discusses the integration of individud behaviors into the system behavior.

Claimsin this section are based on emulatior? of hypothesized individual behaviorsin acommunity of software
agents (active objects). If the behavior of the overal emulated system corresponds to the behavior of the
natural system, the experimenter concludes that the individua behavior of the agents models thet of the naturd
animals.

This gpproach is suggestive rather than conclusive. The individud behaviors emulated may not be the only
onestha will lead to a given overdl system behavior. The experimenter’ s judgment that the overdl behavior of
the emulation is“the same as’ that of the naturd system is highly subjective. In pite of these shortcomings, this
gpproach can a least generate some interesting hypotheses. When our objective isto engineer artificia
systems rather than derive explanations for natura ones, superficid correspondence is often sufficient.

3.1 Ants: Path planning

System Behavior.—Ants construct networks of paths that connect their nests with available food sources.
Mathematically, these networks form minimum spanning trees [Goss et d. 1989], minimizing the energy ants
expend in bringing food into the nest. Gragph theory defines anumber of dgorithms for computing minimum
panning trees, but ants do not use conventiona dgorithms. Instead, this globaly optima structure emerges
from the ample actions of the individua ants.

Responsibilities—Each ant that forages for food has the same basic program, consigting of five rules that
fire whenever their conditions are satisfied [Steels 1991].

1. Avoid obgtacles. Whatever an ant does, it will not amlesdy push against awall.

2. Wander randomly, in the generd direction of any nearby pheromones (scent markers that many insects
generate). If it does not sense any pheromones, an ant executes Brownian motion, choosing each step from a
uniform digtribution over possible directions. If it senses pheromones, the ant continues to wander randomly,
but the distribution from which it selectsits direction is weighted to favor the direction of the scent.

3. If theant isholding food, drop pheromone a a congtant rate as it walks. In the smplest amulations, the
ant continues to move randomly. In others, it follows a beacon (e.g., adistinctive pheromone at the nest) that
leadsin the generd direction of home. Both approaches yidd the same globd behavior. The homing beacon
generates paths sooner, but continued random wandering works in the emulation as well.

4. If theant findsitsdlf at food and is not holding any, pick the food up.
5. If theant findsitsdf at the nest and is carrying food, drop the food.

I ntegr ation.—Brownian motion eventudly brings the ant arbitrarily close to every point in the plane. Aslong
as the separation between nest and food is small enough compared with the range of the ant, a wandering ant
will eventudly find food if thereis any, and (even without a beacon) afood-carrying ant will eventudly find the

% In emulation, software entities mimic the behavior (observed or postulated) of entitiesin the problem domain.
Simulation isamore generd class of techniques, including emulation and aso models that capture the
aggregate behavior of the system but not the activities of the individua members.

3/5/2001 10:52 AM Copyright © 1996, CEC/ERIM. All Rights Reserved. Page 6

Parunak: “ Go to the Ant”

nest again. In most cases, food is available only in some directions from the nest, and ants who wander off in
the wrong direction will starve or fdl to predators, but aslong as there is food close enough to the nest and as
long as there are enough ants to survey the terrain, the food will be found.

Because only food-carrying ants drop pheromone, and because ants can carry food only after picking it up a
afood source, dl pheromone paths lead to afood source. Once afull ant findsits way home, there will be
paths that |ead home as well. Because pheromones evaporate, paths to depleted food sources disappear, as
do paths laid down by food- carrying ants who never reach home. Paths that touch the nest are easily found by
outbound ants, and as long as they lead to food, they will be reinforced by those ants once they pick up food.

Theinitid path will not be sraight, but the tendency of ants to wander even in the presence of pheromones will
generate short-cuts across initial meanders. Because pheromone paths have some breadth, they tend to merge
together into atrace that becomes straighter the moreit is used. The character of the resulting network as a
minimal gpanning treeis not intuitively obvious from the individua behaviors, but does emerge from the
emulation.

3.2 Ants: Brood Sorting

System Behavior.—An ant hill houses different kinds of things, including larvae, eggs, cocoons, and food.
The ant colony keeps these entities sorted by kind. For example, when an egg hatches, the larva does not stay
with other eggs, but is moved to the area for larvae. Computer scientists have developed a number of
dgorithms for sorting things, but no ant in the ant hill is executing a sorting agorithm.

Responsibilities—Theindividud ant dgorithm that yields sysem-level sorting behavior contains some
behaviors smilar to those in the path planning problem [Deneubourg et d. 1991].

1. Wander randomly around the nest.

2. Sense nearby objects, and maintain a short memory (about ten steps) of what has been seen.

3. If anantisnot carrying anything when it encounters an object, decide stochastically whether or not to pick
up the object. The probakility of picking up an object decreasesiif the ant has recently encountered smilar
objects. Inthe emulation, the probability of picking up an object is

p(pickup) = (k*/(K"+1))?
where f isthe fraction of pogitions in short-term memory occupied by objects of the same type as the object

sensed and k™ isa congtant. As f becomes small compared with k™, the probability that the ant will pick up the
object approaches certainty.

4. If an ant is carrying something, a each time step decide stochasticaly whether or not to drop it, where the
probability of dropping a carried object increasesif the ant has recently encountered similar itemsin the
environment. In the emulation,

p(putdown) = (f/(k+1))?

wheref isthe fraction of pogitionsin short-term memory occupied by objects of the same type as the object
carried, and k™ is another constant. Asf becomes large compared with k', the probability that the carried
object will be put down approaches certainty.

I ntegration.—Asin path planning, the Brownian wak eventudly brings the wandering antsto examine dl
objects in the nest. Even arandom scattering of different itemsin the nest will yield loca concentrations of
smilar items that stimulate ants to drop other smilar items. As concentrations grow, they tend to retain current

3/5/2001 10:52 AM Copyright © 1996, CEC/ERIM. All Rights Reserved. Page 7

Parunak: “ Go to the Ant”

members and attract new ones. The stochastic nature of the pick-up and drop behaviors enables multiple
concentrations to merge, snce ants occasionally pick up items from one existing concentration and transport
them to another.

The put-down constant k™ must be stronger than the pick-up constant k™, or else dusters will dissolve faster
than they form. Typicdly, k™ isabout 1 and k™ is about 3. The length of short-term memory and the length of
the ant’ s step in each time period determine the radius within which the ant compares objects. If the memory is
too long, the ant sees the entire nest as a single location, and sorting will not take place.

3.3 Termites: Nest Building

System Behavior.—Tropicd termites construct mounds that can exceed five metersin height and ten tonsin
meass. These multi-story structures store food, house the brood, and protect the population from fire and
predators. The existence of some of these structures has been documented for over 350 years, which isas
long as they have been accessible to the European compulsion for chronologica records. In spite of the
complexity, durability, and effectiveness of these structures, no termite serves the role of a chief engineser,
planning the structure and managing its condruction.

Responsibilities—Termites draw on the pheromone mechaniam illustrated in the ant path- planning example,
and on the wandering in both of the ant examples [Kugler et d. 1990].

1. Metabolize bodily waste, which contains pheromones. This waste is the materia from which the termite
mound is constructed.

2. Wander randomly, but prefer the direction of the strongest loca pheromone concentration.

3. At each time gtep, decide stochastically whether to deposit the current load of waste. The probability of
making a deposit increases with the locad pheromone density, and the amount of waste that the termite is
currently carrying. A full termite will drop its waste even if there is no other nearby depost, and a termite that
senses avery high loca concentration of pheromones will deposit whatever waste it is carrying, even a
relatively smal amourt.

I ntegr ation.—The probabilistic dgorithm leads to the generation of scattered initid deposits. These deposits
attract termites who wander close enough to smell them, and increase the probability that these visitors will
make reinforcing deposits. Because pheromones decay over time, the most recent deposits at the center of the
pile are the strongest, and the piles tend to grow upward rather than outward, forming columns. When two
columns grow near one another, the scent of each attracts termites visiting the other, thus pulling subsequent
deposits into the shape of an arch. A amilar dynamic leads to the formation of floors joining multiple arches.
When one floor is complete, the cycle repesats to congtruct the next.

3.4 Wasps: Task Differentiation

System Behavior.—Mature Polistes wasps in anest divide into three groups. asingle Chief, agroup of
Foragers who hunt for food, and a group of Nurses who care for the brood. These varied roles are filled by
genetically identical wasps. The relative proportion of Foragers and Nurses varies with the abundance of food
and the sze of the brood, but the nest has no Human Resources department, and no wasp (not even the
Chief!) computes what this proportion should be.

Responsibilities—Each wasp maintains two parameters. a Force parameter that determines how mobile it
is, and a Foraging Threshold that determines how likely the wasp isto go seek food. The brood maintains a

3/5/2001 10:52 AM Copyright © 1996, CEC/ERIM. All Rights Reserved. Page 8

Parunak: “ Go to the Ant”

third parameter, Demand, that timulates the foragers. The various wasp behaviors involve interactions of
these parameters [Theraulaz et d. 1991].

1. When two wasps mest, engage in aface-off. The winner is chosen stochagticaly. The probability of
success of individud j in confronting individua i given by the Fermi function of their forces,

e)-y/g g

where h modulates the extent to which the outcome is predetermined. Thus the wasp with the higher force has
ahigher probahility of winning the face-off, but the wasp with lower force will occasondly win. A quantum of
forceis trandferred from the losing wasp to the winning wasp.

2. When the brood receives food, reduce its demand. The brood's demand at timet isgiven by
D(t) = D(t-1)+d(t-1)-Wt-1)
where Wiswork done by dl individud foragers.

3. When awasp is near the brood, determine probabiligtically whether or not to forage. The probability of
foraging is given by the Fermi function p(s;, D(t)), where s; isthe foraging threshold for individud j.
Successful simulation reduces's; by x (alearning coefficient), while fallure to forage increases s by f (a
forgetting coefficient).

I ntegr ation.—Confrontation among wasps shifts force from one to another, a primitive form of
communication. Foraging reduces the brood’ s demand and thus the brood' s stimulation on nearby wasps,
while stimulation reduces wasps' thresholds and thus triggers foraging. When a community of artificia wasps
executes these behaviors over a period of time, the population stabilizes into three groups, corresponding to
the divison observed in the naturd insects. A group with high force and low threshold corresponds to the
foragers, who have both the strength to move about and the sensitivity to the brood to respond to their needs.
A second group with low force and low threshold corresponds to the nurses, who aso are attentive to the
brood but, lacking force, cannot move about and must remain near the brood. Findly, a sngle wasp with high
force and high threshold corresponds to the chief. The chief does not command or control the others, but
grounds the force and threshold scales and (by wandering around the nest and facing off againg the other
wasps) balances these variables across the population.

3.5 Birds and Fish: Flocking

System Behavior.—Focks of birds stay together, coordinate turns, and avoid collisions with obstacles and
each other. Schools of fish exhibit smilar coordinated behavior. Human societies address Smilar problems, in
ar-traffic control and convoys of ships, but conventiona human solutions depend on sophisticated
communication and centra coordination structures not available to birds and fish, and cannot handle the
dengty of coordinated entities that flocks and schools can.

Responsibilities—Each bird or fish follows three smple rules [Reynolds 1987, Heppner 1990]:
1. Maintain a specified minimum separaion from the nearest object or other birds.

2. Maich velocity (magnitude and direction) to nearby birds.

3. Stay closeto the center of the flock.

Integration.—Theflock or school is a sdf-congraining structure in which each entity’ sindividud actions
smultaneoudy respond to and change the overdl structure of the flock. Although each bird or fish senses only
3/5/2001 10:52 AM Copyright © 1996, CEC/ERIM. All Rights Reserved. Page 9

Parunak: “ Go to the Ant”

the movements of its nearest peers, its responses to these movements propagate to others, so that the system
as awhole exhibits globa coordination.

3.6 Wolves: Surrounding prey

System Behavior.—A single wolf cannot kill amoose. The hooves of the larger and more powerful moose
are more than amatch for any sngle aggressor. The pack of wolves must first surround the moose, so that one
can jump on its back while it is occupied with the others. Human SWAT teams use radio to coordinate such
surrounding maneuvers, but wolves don't have wakie-talkies or Smilar long-range communication
mechanisms.

Responsibilities—This task, known in the literature as the * predator-prey” problem, was for some yearsa
magjor chalenge problem in the field of digtributed artificid intelligence (DAI) [Korf 1992]. Many of the
proposed solutions assumed reasoning and communi cation cgpabilities whose existence in wolves is doubtful
at best. For example, the emulated wolves would communicate and negotiate their srategies with one another
(“I'll'head for the north side; why don’t you go to the south?”).

A smpler solution requires only rudimentary sensing and action on the part of both moose and wolves. When
these actions are emulated on a hexagond grid, Sx wolves will aways capture the moose (with one wolf on
each cell adjacent to the moose' s cdll) aslong asit cannot run faster than they [Korf 1992]. [Manda &
Campbdl 1995] study the extenson of these methods to predator-prey problems of different degrees of
difficulty.

1. Moose: moveto the neighboring cdl that is farthest away from the nearest wolf. Aslong asits rate of
movement is faster than that of the wolves, this strategy permitsit to escape.

2. Wolves move to the neighboring cell with the lowest score
S= d(moose)-k* d(wolf)

where d(moose) is the distance to the moose, d(wolf) is the distance to the nearest other wolf, and k isa
tuning constant modeling a repulsive force between wolves.

Integration.—Asin the example of birds and fish, each individud in the wolf- moose system both influences
and isinfluenced by the entire system. Behavior of the overdl system depends criticaly on the relative speeds
of moose and wolves (since afast moose can dways escape a pack of dow wolves), and on the vaue of the
parameter k that establishes the repulsion among wolves. When repulsion and attraction are suitably balanced,
the wolves inevitably surround the moose, without any explicit communication or negotiation of srategies.

4. Engineering Principles

Many of the naturd systems described above share some common principles of self-organization. Aswelearn
to recognize and understand these principles, we can condruct artificid systems that emulate the desirable
behavior we observe in these naturd systems. We begin by surveying principles suggested by other
researchers, then discuss in more detail a set particularly useful for engineering artificia systems. For the sake
of concreteness, each principle isillustrated with reference to one of two actud prototype implementations.
The AARIA shop-floor scheduling and control system, which uses a supplier-consumer model to coordinate
discrete manufacturing both within a single facility and between trading partnersin asupply chain [Parunak et
a. 1997]. CASCADE [Parunak et d. 1987] is a salf-routing materid handling system.

3/5/2001 10:52 AM Copyright © 1996, CEC/ERIM. All Rights Reserved. Page 10

Parunak: “ Go to the Ant”

4.1 Other Lists of Principles

The paradox that ample individua behaviors can give rise to complicated overdl behavior has been known for
centuries. One ancient observer, King Solomon, knew from hisfather David of the elaborate court
organizations of orienta kings and the preparations needed for military campaigns. He marveled that insects
could accomplish both these tasks without centra control. Thinking of the complex systems needed to
maintain the paace commissary (The Bible, 1 Chronicles 27:25-31), he wrote, “ Go to the ant ...; consider her
ways, and be wise. Having no guide, overseer, or ruler, she prepares her bread in the summer, and gathers her
food at harvest time’ (The Bible, Proverbs 6:6). He knew the complexity of a military organization (The Bible,
1 Chronicles 11:10-12:37), and was impressed that “the locusts have no king, yet dl of them go forth by
companies’ (The Bible, Proverbs 30:27). Nearly three thousand years later, a participant in the NCM S
Virtua Enterprise workshop in 1994 commented, “We used to think that bugs were the problem in
manufacturing software. Now we suspect they may be the solution!”

More recently, three works offer listss smilar to the list in this paper. Each of these works has its own
perspective, distinct from this paper’ s emphas's on software engineering, and the lists they offer reflect these
digtinctive objectives. There is not space here to discussthese ligtsin detall, but a brief summary will provide
perspective for the principles highlighted in this paper. The bracketed terms after each item in these other lists
indicate the principlesin this paper that correspond to them.

4.1.1 Holland, Hidden Order

[Holland 1995] outlines an extensive research program devoted to understanding what he cals “ complex
adaptive systems’ (CAS's), roughly anaogous to what we call a Multi-Agent System. He offers four
properties that such systems share, and three mechanisms that they employ. These fegtures are andytic rather
than synthetic. That is, they represent properties and mechanisms common to existing CAS's, not normeative
recommendations for how to construct new ones. The four properties of CAS sare:

1. Aggregation: CAS s are not congructed monalithicaly, but consst of smaler components (roughly, our
“agents’), which are themselves aggregates of till smaller units. The behavior of the aggregeate is often
digtinct from the individua behaviors of the parts. [Things, Smdl (Mass)]

2. Nonlinearity: The behavior of CAS sisnot linear, and their interactions are thus not smply additive.
[Thingg]

3. Hows CAS sare characterized by flows of various substances through networks of agents. These flows
exhibit two important effects: multiplication (in which one change produces a chain of others) and recycling
(feedback loops). [Entropy]

4. Divergty: The agentsin a CAS differ from one another. [Diversty]
The three mechanisms are;
1. Tagging: Agentsin a CAS are able to recognize and differentiate among one another. [Share Information]

2. Interna Modds Theinternd structure of an agent in a CAS endblesiit to anticipate changesin its
environment. [Share Information]

3. Building Blocks: An agent’ sinternd model is made up of smdl, reusable modules, thus enabling it to
capture arich set of dternatives with alimited representationa vocabulary. [Share Information]

3/5/2001 10:52 AM Copyright © 1996, CEC/ERIM. All Rights Reserved. Page 11

Parunak: “ Go to the Ant”

4.1.2 Resnick, Turtles, Termites, and Traffic Jams

[Resnick 1994] has a pedagogica objective. He wants to understand how people think about decentralized
systems, and hisfive principles are “guiding heuristics’ that people can use to learn to understand these
systems.

1. Pogtive feedback isn't dways negative. Sometimes it leads to destructive oscillations, but in other casesiit
iscriticd to sdf-organization. [Entropy]

2. Randomness can help creste order, by providing diversity among agents. [Diversity]

3. Aflockisn't abig bird. The behavior of an aggregeate system is not the same as the individud behaviors of
the lower-levd units out of which it is congtructed. [Small (Mass)|

4. A traffic jamisn't just acollection of cars. Decentraized systems generate emergent objects that are
digtinct from any of the individud parts. [Things]

5. Thehillsare dive. The environment is an active process that impacts the behavior of the system, not just a
passve communication channe between agents. [Entropy]

4.1.3 Kevin Kdly, Out of Control

[Kely 1994] seeksto identify the laws “governing the incubation of somethings from nothing.” Like ours and
unlike those of Holland and Resnick, his principles are prescriptive rather than descriptive. However, his focus
is consderably more philosophica and less oriented to engineering concerns than is ours.

1. Didribute being. Emergent behavior is distributed across the components, rather than localized in any
sngle one. [Decentraize]

2. Control from the bottom up. Wide-ranging, concurrent changes frustrate central top-down control.
[Decentrdize; Smal (Scope)]

3. Cultivate increasing returns. Pogitive feedback is essentid to large, sdlf-sugtaining systems. [Entropy]

4. Grow by chunking. Large monoliths are unreliable. Complexity should be assembled incrementally from
smad| independently-functioning modules. [Small (Mass)]

5. Maximizethefringes. A diverse entity is more adaptable and robust than a homogeneous one. [Diversity]

6. Honor your errors. Competitive superiority depends on breaking out of conventiond patterns, which is
indigtinguishable from error. [Diversity]

7. Pursue no optima; have multiple gods. Surviva and adaptation require an exploratory approach that is
necessarily sub-optimad in aforma sense. [Plan and Execute Concurrently]

8. Seek peragtent disequilibrium. A useful system must balance tability with constant change, otherwise it
will degenerate either to convulsons or to death. [Entropy]

9. Change changesitsdlf. In dedling with changing circumstances, complex systems change, and over time the
rules of change themsalves undergo change. [Share Information]

4.2 Agent Things, not Functions

Classicd software engineering techniques lead many systems designers toward “functiona decomposition.”
For example, manufacturing information systems typicaly contain modules dedicated to functions such as

3/5/2001 10:52 AM Copyright © 1996, CEC/ERIM. All Rights Reserved. Page 12

Parunak: “ Go to the Ant”

“scheduling,” “materia management,” and “maintenance.” Carried over to agent-based systems, these ingtincts
lead to individua agents assigned to such functions as Logigtics, Transportation Management, Order
Acquisition, Resource Management, Scheduling, and Dispatching [Fox et a. 1993, Barbuceanu & Fox 1995].

Thefunctiond gpproach iswell suited to centralized systems, but unprecedented in naturaly occurring
systems, which divide agents on the basis of distinct entities in the physical world rather than functiona
abgtractions in the mind of the designer. A functiona decomposition gppears most natural when the digtinction
between agents and their environment is overlooked. A clear distinction between agent and environment (such
asthat forced by discrete-event dynamicsin the agent and time-based dynamics in the environment), and a
recognition that the environment’s own process mediates agent interactions, force the designer to pay attention
to topologica boundaries between agents and environment and make it more difficult to assgn agentsto
arbitrarily concelved functions.

Even in naturd systems, functions are important, but they emerge from the interactions of the individua
components rather than being explicitly represented as unitsin their own right. Holland’ s Nonlinearity principle
explains how such unexpected behaviors come about. The temptation to functional decomposition reflects
Resnick’ sfdlacy of identifying atraffic jam with a collection of cars, and recognizing that falacy isan
important first step to avoiding the error. Holland' s second sense of Aggregation (of agent behaviors rather
than agents themselves) aso focuses on thisissue.

ERIM’ s experience with agent-based prototypes suggests that each functiona agent needs detailed
knowledge of many of the physica entities being managed. When the physica system changes, the functiona
agent needs to change as well. However, it is often possible to define generic behaviors for physicaly defined
agents from which the required functiondity will emerge, for widely varying overdl populations of agents.

There are two important exceptions to this principle: legacy systems and watchdogs.

Mot indugtrid agent applications are additions to existing systems. They need to interface with legacy
systems many of which are functiondly oriented. For example, a shop-floor control system needs to interface
with afactory-wide MRP system that is doing classica scheduling. A reasonable way to connect the legacy
System to the new system isto encapsulate it as an agent. Even though the MRP system may be functiondly
defined, as alegacy program it is awell-defined “thing” in the gpplication domain and so deserves agenthood.

Its presence in the system will not y
preclude the development of techniques anager
for emergent scheduling aslong asits :
agent behaviorsredrict it to serving asa Maeﬁzlrilr?g Processing }_'Y:;]tgﬂ% Processing
link with the rest of the system rather than . | [Resources Resources Resources| ~ LResources
drawing on its centralized scheduling < \ [
behavior. é

Unit Unit
Some system dates that loca agents g Process " Process
cannot perceive may need to be g o 5 nit
monitored to ensure overal system safety = ‘ Process F Process
or performance. A watchdog agent that Unit 3 Unit

Buff

smply monitors the behavior of a Process Process
population of physica agentsis not nearly Part Flow Axis
as redtrictive on future reconfiguration as
one that does centralized planning and Figure 1: The AARIA Agent Community

3/5/2001 10:52 AM Copyright © 1996, CEC/ERIM. All Rights Reserved. Page 13

Parunak: “ Go to the Ant”

action. It isbest not to rely on watchdogs at dl, but if they are used, they should sense conditions and raise
sgnas but not plan or take action.

The ovads and rectanglesin Figure 1 show the main agent classesin the AARIA agent community. Each
material handling resource (such as atruck or afork-lift), each processing resource (such as a machine tool or
an operator), and each part is a separate agent. There are no separate agents for such standard functions as
scheduling or logistics, but these functions emerge from the interaction of the loca agents. AARIA’s Manager
agent is an example of awatchdog, who maintains agloba view of the operation and raises Sgnasto dert the
other agents when something undetectable on the local level needs atention.

4.3 Keep Agents Small

Naturaly occurring adaptive systems have parts that are smal compared with the entire system, in mass, time,
and space.

4.3.1 Smallin Mass

Each termite is an dmogt negligible part of the entire termite hill. As aresult, the behavior of the whole is stable
under variations in the performance of any single member, and the collective dynamics dominate. Thisand
amilar examples suggest implementing artificia sysems with large numbers of agents, each samdl in comparison
with the whole system.

The motivation for this principle derives not from our theory of multi-agent systems, but from the experience of
software engineers that the difficulty of desgning, implementing, and launching computer-based systems
increases exponentialy with the size of the sysem. Smdl individua agents are eesier to condtruct and
understand than large monoalithic systems, and the impact of the failure of any sngle agent will be minimd. In
addition, alarge population of agents gives the system aricher overal space of possible behaviors, thus
providing for awider scope of emergent behavior. Very roughly, the number of agentsis amultiplicative factor
in determining the implementation effort, but an exponent in determining the size of the overdl system date
space. The effort to code 100 agents with 10 behaviors each is on the order of 100*10 = 10°, but the
resulting state space is on the order of 10'%.

Keeping agents smdl often means favoring speciaized agents over more generd ones, using appropriate
aggregation techniques. For example, a complete manufacturing cell would be extremely complex asasngle
agent, but can be developed as a community of agents for individua mechanisms (e.g., one for the fixture, one
for the tool, one for the load-unload mechanisam, one for the gauging station). Our modd of a multi-agent
system directly supports such aggregation, sSince an environment (and its associated agents) can become a
higher-level agent by defining its inputs and outputs to another environment. The BRIC architecture (Ferber
1995) is an important first step in developing such systems.

Holland’s Aggregation property, Resnick’s Hock/Bird digtinction, and Kelly’srule, “Grow by Chunking,” dl
contrast the mass of the system and that of the individua agents.

AARIA’s assgnment of a separate agent to each machine, each part, and each tool in amanufacturing
enterprise provides agents that are much lighter weight than traditiona shop-floor software systems. AARIA
does not further decompose workstations into sensor and actuator agents, only because the scope of the
project isto investigate issues a the leve of the shop floor rather than individua device engineering. The
industria controls marketplace offersincreasing support for agents as smal as the sensor/actuator leve,

3/5/2001 10:52 AM Copyright © 1996, CEC/ERIM. All Rights Reserved. Page 14

Parunak: “ Go to the Ant”

including smdl controllers of traditiona design (Rockwell AllenBradley, Mitsubishi, Zworld) aswell as more
nove architectures combining computation, control, and networking (Echelon, Basic Stamp).

4.3.2 Small in Time (Forgetful)

Naturally occurring agent systems can forget. Pheromones evaporate, and as a result obsolete paths leading to
depleted food sources disappear rather than mideading members of the colony. The probability that awasp
will forage decreases asit successfully ressts simulation. Even the degth of unsuccessful organismsin an
ecosystem is an important mechanism for freeing up resources so that better adapted organisms can flourish.

The mechaniam of forgetting is an important supplement to the emphasisin conventiond Al sysemson
mechanisms for learning. In a discrete-event system, forgetting can be as complex aslearning, since both
represent discrete Sate trangtions. In atime-based system, forgetting can take place “ automaticaly” through
the atenuation of a sate variable that is not explicitly reinforced. The example of pheromones suggests that a
time-based environment can support a“forgetting” function even for discrete-event agents.

CASCADE [Parunak et a. 1987] shows how an artificial agent system can forget. In CASCADE, each
segment of a switched conveyor system is a separate agent that seeks to maintain its population of a given part
type within certain limits. If the population rises above the upper limit, the ssgment seeks to spill excess parts
to some neighboring segment, while if the population fals below the minimum, the segment sends requests out
to neighboring segments. The probakility that a segment will spill apart to agiven neighbor is a Sate variable
for the spilling segment, and is increased each time the neighbor requests a part and decreased each time the
segment spills a part to the neighbor. Because the information on aneighbor’sinterest in apart is maintained as
ared number rather than symbolicaly, obsolete behaviors are forgotten automaticaly as the vaue is modified
to reflect more recent behavior. The rate a which the probability changes in response to interactions with
neighboring ssgmentsis atuning parameter.

4.3.3 Small in Scope (Local Sensing and Action)

The participants in naturd systems usudly can sense only their immediate vicinity. In pite of this redtriction,
they can generate effects that extend far beyond their own limits, such as networks of ant paths or termite
mounds. Wolves are built close to the ground and so can't see very far, but manage to coordinate a hunt with
other wolves over awide area. Kelly’s exposition of the principle, “ Control from the bottom up,” recognizes
the superiority of many locd interactions over afew globa ones.

Though high-bandwidth wide- area tdlecommunications makes it increasingly easy to connect each artificia
agent directly with every other agent, it may be beneficid to follow the naturd examples and engineer agents
that limit the recipients of their messages. Telecommunications technology means that these limitations need not
be geographicd, but naturd examples suggest that effective sysems will restrict communications in some way.
Wherever possible, agents should define the audience that needs to receive the message, at least by subject-
based addressing, rather than broadcasting information. Severd lines of research suggest the need for such a
restriction.

A suggedtive analogy comes from the history of physics. Newton's classic equation for gravitationd force

F = gM;M/r?
usefully describes the effects of gravity, but does not explain the underlying mechanism. Massve bodies do
not figure out how hard to pull on one another by communicating their masses and measuring the distance that

3/5/2001 10:52 AM Copyright © 1996, CEC/ERIM. All Rights Reserved. Page 15

Parunak: “ Go to the Ant”

separates them. Einstein’ s theory of genera reldivity replaces thisimpossible notion of action-at-a-distance
with amodd of local interaction in which masses warp space in their immediate vicinity and respond to the
loca geometry of the pace in which they find themsdves. Locdization of agent interactions thus follows in the
intellectud tradition of modern physics.

[Kauffman 1993] describes experiments with randomly constructed networks of Boolean operators that show
that salf-organization works better in sparsay-connected systems than in densaly-connected ones (compare
[Hogg et d. 1989]). The networks under study jump from one point in their state space to another asthey
evolve. A given network isfinite and deterministic, So eventudly it will enter acycle of states, but given the 5ze
of anetwork’ s state space (»2'), one might expect both the time needed to enter a cycle and the length of a
cycleto be very long. Surprisingly, such networks can repesat in about 100 steps, with a period of repetition on
the order of 10 to 20 steps! This self-organization appears only when the network is sparsely connected (for
example, when each ement is connected to no more than three or four others). Networks with very dense
connectivity do not settle down easily into loops, but exhibit ungtable behavior.

Software engineering offers another argument for local agent communications. [Dijkstra 1968] warned of the
dangers of the Fortran GOTO statement, which gave the programmer the ability to jump from anywhere to
anywhere in a program. This powerful tool led to tangled mazes of spaghetti code that were easy to bresk and
amogt impaossible to correct and maintain. More disciplined structures proved to have the same expressive
power, while supporting modularity and restricted interfaces that limited the propagation of faults. Globa data
reference has the same kind of engineering implications that globa transfer of control does. In both cases,
direct remote interactions are difficult for humans to understand, maintain, and control. In both cases, global
effects can be obtained by propagation of loca influences, much more robustly than by providing globa
influences.

Evidence most closdly related to our modd of multi-agent systems comes from experiments of [Takashina &
Watanabe 1996] on the impact of sensor scope on the behavior of agentsin a predator-prey smulation. They
find adirect correaion between the entropy of the output from an agent’s sensors and the quality of the
agent’s performance. For a given sensor bandwidth, as the range of an agent’ s sensors increases, entropy
(and performance) first increase, then decrease. The work of [Deneubourg et d. 1991] on how ants sort their
nestsyields asmilar result. An ant whose short-term memory istoo long “sees’ the entire nest a once and is
unable to sort. In smple terms, giving an agent access to too much of the world may lead to sensory overload,
reduced ability to discriminate, and lower performance. In terms of our <Agents, Environment, Coupling>
modd, if agents are smal compared to the environment, their State will have fewer eements than the
environment's State, and their Input and Output subsets of State will be even smaller. The accuracy of the
model of the environment presented by an agent’s Input will begin to decrease once the agent’ s scope of
senang is So large that the portion of the environment accessible to it contains more information than its Input
can modd. Thus“smdl in scope’ isadirect consequence of “smdl in mass”

Both AARIA and CASCADE explicitly limit the scope of agent communication. Figure 1 shows how each
class of AARIA agent (represented by arectangle or an dlipse) interacts only with certain other classes of
agents. In practice, this limitation isimpased through subject-based addressing and agent migration. In
subject- based addressing, agents subscribe to certain classes of messages and thus are not distracted by
messages irrdevant to their interests. Agent migration supports high-bandwidth conversations between two
specific agents by moving them onto the same physica processor. In CASCADE, each segment of the
materiad handling system communicates only with physicaly adjacent segments, and routing through the
network takes place without using any globa system map.

3/5/2001 10:52 AM Copyright © 1996, CEC/ERIM. All Rights Reserved. Page 16

Parunak: “ Go to the Ant”

4.4 Decentralize System Control

Originaly computers were large, expensve systems. Their physical Size and sendtivity to their environment led
to the “ computer room,” a pecidly constructed and climate-controlled sanctuary tended by a high priesthood
of operators. Because computers were so expensive, there were few of them, and because computer rooms
were expensve, even if afirm had more than one computer, they were often housed in the same facility.
Computationa needs throughout the facility were dl handled at the same centrd location. Until the spread of
time-sharing systemsin the mid-1970's, most computers ran one application a atime, encouraging software
engineersto take alarge-grained, centrdized gpproach to system computerization

Such centraization is foreign to naturd systems. To echo King Solomon, ants have no overseer, and locusts
have no king. Even the distinguished individua in some insect colonies (such as the chief wasp in the Polistes
hive or the queen honeybee) does not give orders, but instead serves as a communication bus for the rest of
the community. In our modd, only the environment has a Sate space large and rich enough to represent the
entire system, and unless the environment is itsdf a computer, programming its process directly is a matter of
physica and chemica engineering that is usualy more difficult and fragile than programming an agent’s
(computer-based) process.

This observation does not mean that we should neglect engineering the environment; on the contrary, the
<Agents, Environment, Coupling> model emphasizes that we must pay attention to both components of the
system. However, the rich information interface that computers support is available only through the agents,
and there are important reasons not to make one agent large and complicated enough to control the entire
sysem.

A centrd agent isagngle point of failure that makes the system vulnerable to accident.
Under norma operating conditions, it can easily become a performance bottleneck.

Evenif it is adequately scaled for current operation, it provides a boundary beyond which the system
cannot be expanded.

It tends to attract functiondity and code as the system devel ops, pulling the design away from the benefits
of agents and in time becoming a large software artifact that is difficult to understand and maintain.

Centrdization can sometimes cregp in when designers confuse a class of agents with individua agents. For
example, one might be tempted to represent a bank of paint booths as “the paint agent,” because “they dl do
the samething.” Certainly, one would develop a angle class (in the object-oriented sense of the word) for
paint-booth agents, but each paint booth should be a separate ingtantiation of that class.

The importance of distributed decentrdized systemsis axiomatic in Holland, Resnick, and Kelly. Kelly makes
this point explicitly in his principles “ Digribute being” and “Control from the bottom up.”

4.5 Support Agent Diversity

We devel op the concept of agent divergty in three steps.

1. Why should agents be diverse? Ecologica examples and our modd show the vaue of diverse populations.

2. How can diversity be established and maintained? Random processes and repulsive fidds are important
tools.

3. What changes are necessary in management philosophy to support diversity? Managers need to
recalibrate their acceptable thresholds for risk and redundancy.

3/5/2001 10:52 AM Copyright © 1996, CEC/ERIM. All Rights Reserved. Page 17

Parunak: “ Go to the Ant”

4.5.1 TheValueof Diversity

The difference in Sze between an individua agent’s State and that of the environment not only favors small
agents and decentralized control, but aso encourages diversity among agents. The environment’s State
contains information concerning both opportunities that agents should exploit and threats that they should
avoid. The more of the environment’ s State the agents can sense and modify, the better they can exploit those
opportunities and avoid those threats. Any single agent can model and manipulate only a smdl portion of the
environment, and a population of completdly identical agentswill do no better, snce they will till cover only
the same subset of the environment’s state. A population of diverse agents will cover more of the
environment’ s state and thus provide better performance. We can illudtrate this principle mathematically for the
homodynamic discrete-event case by observing that if the state of Agent; is State and the environment has
State,, we want to maximize

AStatee

While diversty is not the same as population size, the two are correlated. In aphysica environment, it is
impossible for two agents to occupy the same place a the same time. Thus two otherwise identica agents will
be at different locations in the environment. They will differ in that lement of their respective States that
records their location. This smple but crucid dement of diversity enables them to monitor different € ements of
the environment’ s state, and thus collectively be more robust than a single agent could be. The important
observation is that the advantage of the larger population lies not merely in numbers, but in the diversty that
results from physica excluson laws.

. 0
Hgﬁlj Input, E Output, EC Sate,

where ||| measures the number of different state variablesin x.*

Natura populations often have a“critica sze’ that is much larger than the smple breeding pair that a standard
accounting paradigm might justify. If the population fals below thisleve, the colony dies out. Once an ant finds
food, it generates a pheromone trail to guide other antsto it, but the critical initid discovery depends on having
enough ants wandering around that some will ssumble across food, wherever it may be. Unused dternatives
(unsuccessful scouts) are insurance for unforeseen change, not waste.

The example of amilar agents a different locations illudtrates that diversity is not the same as incompetibility.
The diverdty in location among ants is able to benefit the society as awhole because in many other respects
the ants are interchangeable. They dl like the same kind of food, and they al lay down and sense the same
pheromones. Their diversity of location would be of no vaue if they were not Smilar enough to one another to
share in the benfits that diversity conveys.

Divergty can be quantified by formdizing these ingghts. Treeting this problem adequately is beyond the scope
of this paper, but one might begin by defining the square symmetric matrix M over Agents such that

B HStateI C Sate, H
M = l ‘Statq E Sate, H

* This example is only an illustration. For example, sometimes two agents with the same state variables (eg.,
“Location”) can sample different aspects of the environment. Full formalization of the concept of diversity is
beyond the scope of this paper.

3/5/2001 10:52 AM Copyright © 1996, CEC/ERIM. All Rights Reserved. Page 18

Parunak: “ Go to the Ant”

A homogeneous population is one for which every dement of M is 1. An incompatible population is one for
which some dement of M" is O for every value of n (that is, Some subpopulations of agents cannot interact with
one another). A diverse population is one that is neither homogeneous nor incompatible. Measures of diversity
can be derived in terms of various matrix theoretic characteristics, such asthe average vaue of the dements of
M or the least value of n for which M" has no zero eements®

Artificid sysems engineered for leanness are liable to fall if their environment changes unexpectedly. One price
of being able to thrive in a congantly changing environment is awillingness to support a diverse st of
resources that go beyond the needs of the immediate environment [Preiss 1995]. Holland captures this insght
as his Diversty principle; Kelly, as*“Maximize the fringes.”

AARIA supports diversity by ingtantiating agents for every individual machine, operator, tool, and other
resource available in the factory. It cannot enforce diveraity. A management decision to equip a ship with only
milling mechines will result in ashop that cannot produce rotationd parts. However, if management adds
lathes, AARIA will enable processes that need them to identify and exploit them.

4.5.2 Achieving Diversity: Randomness and Repulsion

Resnick’s Randomness principle recognizes that formally random behavior can be a good way to achieve the
diversity a population of agents needsin order to adapt. Randomized agents attack a problem in a Monte
Carlo fashion that does not require a detailed advance mode of the domain, and lend themsalves to much
smpler coordination and inferencing agorithms than gpproaches that require an explicit reason for every
decison.

The use of Fermi functions and other weighted probabilistic mechanismsin insect communities is an example of
using randomness to achieve diveraity. Both AARIA and CASCADE rely on smilar random mechanismsto
identify and exploit opportunities. As described above, a conveyor segment in CASCADE sdlects a neighbor
to which to spill an excess part probahilisticaly, in effect by rolling adie that is weighted by past experience
with each neighbor’ s requirements. In AARIA, individua resources search their projected utilization level
stochagtically to decide when to offer their services to a unit process.

The wolf and bird examples show how a smple repulsion among agents can maintain diversity of location. The
same technique could be gpplied to other aspects of the relation among agents. For example, in amachine job
shop, anew job can be processed more rapidly if the necessary tooling is dready on the machine. Machine
agents representing otherwise identical machine tools in such a shop might use a repulsive force with respect to
their tooling characteridtics to seeto it that the currently unused machines have diverse tooling, thus increasing
the chances that anew job will find amachine ready to runiit.

> Again, this formdization is intended only as an illustration. Among other shortcomings, it is restricted to
homodynamic discrete-event systems, it ignores the probability that the environment’s Process will couple
states sensed or atered by otherwise digoint populations of agents, it does not take into account possible
differences in input and output capabilities among agents with the same underlying sate variables, and it does
not consider the degree of amilarity among the Processes of different agents.

3/5/2001 10:52 AM Copyright © 1996, CEC/ERIM. All Rights Reserved. Page 19

Parunak: “ Go to the Ant”

4.5.3 Management Concerns. Risk

An ant who wanders off in search of food where there is none may never return to the nest. Traditiond
industrial analysis would consder the insect an example of wasted resource or under-utilization, and would
indg that antsfile detailed exploration plans (instead of wandering randomly) and head home when their
energy leve reaches one-hdf (instead of going beyond the point of no return in hopes of refuding a ayet-to-
be-discovered food source). An ant hill that took such measures to guarantee the security of its ants would be
less effective in identifying outlying food sources, and thus less robust overdl.

Kely canonizes this observation as “Honor your errors,” observing that error and innovetion are
indistinguishable before the results are in. Managers need to recognize risky behavior as an important
mechanism for providing the diversity a population needs to survive change.

The adaptability of an economy as awhole depends on the existence of awide range of attitudes toward risk,
ranging from highly conservative (optimized to the current environment, but unable to change) to highly daring.
Most of the latter group will fail, but those who succeed enable the society to adapt to new conditions, and
enjoy dramatic rewards. Compare the rule of thumb among some venture capitalists that investment returns
are maximized by a portfolio in which no more than 20% of the startups succeed [Morley 1995].

4.5.4 Management Concerns. Redundancy

Compared with conventiond systems, naturd agent-based systems seem wasteful. They dlocate far more
resources to atask than agloba andysis would require, and sometimes seem to throw resources away. For
example, an ant hill’ signorance of where food may be found requires alarge army of scouts, some of whom
wander far from both nest and food and either starve or are taken by predators.

The example of the ant hill shows that redundancy supports diversity in two ways. The diverdty in location
among the ants enhances the colony’ s chances for finding food and thus surviving, while the smdl sze of one
ant in comparison with the colony means that severd individuas can perish without endangering the entire
community. These two indghts reflect our earlier distinction among homogenety, diversity, and incompetibility.
Because diverse agents are not homogeneous, they can monitor an environment that is much more complex
than any single agent. Because they are not incompatible, the community as awhole can tolerate the loss of
any oneindividua, drawing on the overlapping capabilities of others.

Sometimes lack of redundancy in the application domain leads to centralization. If every product in a plant
must pass through a single paint booth, it is al too easy to give the agent representing that booth strong centra
characteristics. For example, with multiple paint booths, booths might bid for products, but with only one, it
cdlsthe shots unilaterdly. In such acase, it is sometimes possible to reduce this effect by imagining thet there
are two or more such agents, and letting the “real” one regularly win run-time competitions. Only the “red”
agent would ever win abid for work, because the others would aways report that their machines are off-line.
If there is ever aneed for new machines, they can be added without modifying the overdl design.

Redundant agents can step in for one another because agents do not communicate directly with one another,
but only mediately, by making changes in the environment that are subsequently sensed by other agents. Any
agent that senses these changes can respond to them, and failure of an individua agent does not bring the
system down as long as there are other agents sufficiently smilar to sense the same environmental changes and
respond appropriately to them.

AARIA supports redundancy in production capability by usng a negotiation protocol to identify potentia
suppliers for the inputs to a given unit process. For example, a unit process that needs a milling machine issues
3/5/2001 10:52 AM Copyright © 1996, CEC/ERIM. All Rights Reserved. Page 20

Parunak: “ Go to the Ant”

areguest indicating the required machine class in the subject, and through subject- based addressing, all
meachines of that class that are currently on the network will receive the request. Through a negotiation, the unit
process discriminates among available machines on the basis of criteria such as operating cost and availability,
and selects a platform on which to execute. If one machine bresks down or isfully loaded, this approach
permits another to take its place, aslong asthe physica shop has redundant capabilities.

4.6 Provide an Entropy Leak

The Second Law of Thermodynamics observes that closed systems progressively become more disordered
over time. It is not obvious that alarge collection of agents will organize itsdf to do useful things. The Second
Law warnsthat the result of such an architecture may be disorder.

Natura agent-based systems do organize themsdves with driking efficiency. A common explanation isthat a
system can become more organized if energy is added to it fromthe outsde (for example, by the metabolism
of the food gathered by an insect hive). The addition of energy is necessary for self-organization, but hardly
aufficient. Gasoline in congiruction equipment can erect a building, but the same gasoline in aterrorist’ s bomb
can destroy it.

In natural systems, agents can organize themselves at the macro level because their actions are coupled to a
disspative or disorganizing process a amicro level. The system can reduce entropy at the macro leve by
generaing more than enough entropy at the micro leve to pay its second-law debt. To adopt another
metaphor, it provides an entropy leek to drain disorder away from the macro level (where useful work is
done) to the micro level (where it won't interfere with the system’ s function).

In one modd of this leskage,

micro-levd dl$p6t|0ﬂ|Mh€ Organized

environment generates aflow fied Macro Agent Source: Kugler & Turvey 1987
that the agents can perceive and Behavior

reinforce and to which they can ‘

orient themselves [Kugler & Rational Action Perception

Turvey 1987]. Insect colonies (Entropy Decrease)

leak entropy by depositing

pheromones whose molecules, - - o

evaaorr?ting and spreeding thrPUQh Micro Dci::sfirggt?gn o (En':?:)sps;/plsg:)enase) E:glvé
the environment under Brownian

motion, generate entropy. The

resuiting flow produces a field that Force Flow
the insects can perceive and to

which they orient themselvesin Figure 2: Macro Organization through Micro Dissipation
meaking further pheromone

deposits. Figure 2 generdizes this example in terms of the three fundamental processes: micro disspation,
macro perception of the micro flow fidd, and macro reinforcement of the micro diss pative mechanism.

In other cases, the marker diss pates among the agents themselves rather than in the environment, so that the
individua agents belong to the “Micro” scae leve, leaving only the emergent structures at the macro level.
One example is the flow of force among wasps that drives the emergence of the three rolesin the hive.
Another exampleis the movement of currency in a market economy. Money benefits its holders only when
they spend it. Asit spreads from purchasers to buyers, entrepreneurs perceive the resulting flow field and

3/5/2001 10:52 AM Copyright © 1996, CEC/ERIM. All Rights Reserved. Page 21

Parunak: “ Go to the Ant”

orient themsdlves to it, resulting in the sdlf- organi zation of structures such as supply chains and geographic
€CoNoMmic centers.

Artificid agent communities will be more robust and better able to organize themselves if they are designed to
include a disspative mechanism such as a currency. This mechanism should have three characterigtics:

1. 1t must flow (either among agents or through the environment), thus setting up a gradient field.
2. Theagents must be able to percaive thisfield and orient themsdlvesto it.
3. Theagents actions must reinforce the field (positive feedback).

Principles and mechanisms related to the need for an entropy lesk arein the forefront of the lists presented by
Holland, Resnick, and Kelly. All three discuss the need for positive feedback (Holland under the rubric of
Fow and Kdly as Increasing Returns). Kelly’s paradox of “Persstent disequilibrium” reflects the tenson
between high-level order and low-level disorder. Resnick’ sindstence that “The Hills are Alive’ pointsto the
importance of the environment, which is usually where we need to dump excess entropy, and points up the
importance of understanding the environment explicitly in desgning amulti- agent system.

In AARIA, each agent participates in an economy in which it buys the products and services it requires from
others and sdlls its own products and services. The flow of currency among agents guides their decisions, thus
providing an entropy lesk that supports self-organization of the entire system. The use of a currency to drive
sdf-organization in many implementations is documented in [Clearwater 1996]. [Drogoul 1995] offersa
fascinating example of how asmple dissipative mechanism of another sort can enable arudimentary agorithm
to play a respectable amateur game of chess.

4.7 Enable Agents to Share Information

Naturd systems exchange information among members of the population, at three levels: the species, the
individual, and the society. Sexud reproduction exchanges information from one generation of a speciesto
another, by passing on successful characterigtics in the form of chromosomes to offspring. Individua organisms
can also pass on skills post-embryonically. For example, young black bears learn to rob food caches hung
from trees by watching older bears. The society as awhole can learn even if individud members do not, asin
the development of pheromone paths in an insect colony. In each case, a community reduces the need for
expensve search by finding ways to cache and share accumulated knowledge. In the <Agents, Environment,
Coupling> model, species and individuals learn by modifications to agents State and Process components,
while societies learn by modifying the environment’s State.

Artificid agent sysems can often use smilar mechanisms. While learning in a single agent can require
sophigticated techniques, methods for learning across generations, such as genetic or evolutionary
programming [Foge 1995, Mitchell 1996, Koza 1992], have proven their maturity in numerous applications,
and changing a community’ s structure to enable its members to respond better to a changed environment is
sraightforward for agent architectures.

Holland' s Tagging, Internal Model, and Building Block mechanisms support the sharing of information among
agents, while Kdly's concept of change changing itsdlf reflects the accumulation and transmission of
knowledge from one generation to another.

AARIA agents share information explicitly, in the content of messages that they passto one another. In
addition, the AARIA architecture supports genetic modification of various aspects of agent behavior, though
this feature is not yet implemented.

3/5/2001 10:52 AM Copyright © 1996, CEC/ERIM. All Rights Reserved. Page 22

Parunak: “ Go to the Ant”

4.8 Plan and Execute Concurrently

Traditional systems dternate planning and execution. A firm devel ops a schedule each night that optimizesits
manufacturing operations the next day. Unfortunately, changesin the red world tend to invalidate advance
plans. Manufacturing engineers in industries as diverse as semiconductors, aerogpace, agricultural equipment,
and motor vehicles agree that adaily scheduleis usudly obsolete less than an hour after the day begins, and
from that point on serves to guide expediters, not to tell when specific manufacturing resources will be working
on particular jobs. As Kdly recognizesin his principle, “Pursue no optima,” theoreticad optima are usdess if
they depend on a steady Sate that is never achieved.

The problem isa natural consequence of a system in which the environment as well asthe agentshasa
Process that can autonomoudy modify the environment State with which agents interact. Although traditiona
atificd intelligence has devoted consderable atention to the “ plan, then execute’ mode, [Agre & Chapman
1987] show the remarkable functiondity of concurrently reasoning about a Stuation and acting in it, in ahighly
dynamic environment (Pengo, an arcade video game) that would frudtrate traditiona planning models.

Natura systems do not plan in advance, but adjust their operations on atime scae comparable to that in
which their environment changes. The coherence of their behavior over timeis maintained by the dynamics of
their interactions, not imposed by an externa plan or schedule. To achieve the robustness exemplified by these
systems, artificial agents should seek to avoid the * plan then execute” mode of operation and instead respond
dynamicaly to changesin the environmertt.

AARIA’s mechanism for scheduling tasks on resourcesis an example of concurrent planning and execution.
The actud time a which ajob will execute may not be known until the job starts. The resource does not
schedule anewly-arrived job at afixed point in time, but estimates probabilisticaly the job'simpact on its
utilization over time, based on information from the customer about the earliest and latest acceptable ddivery
times. The width of the window within which the job can be executed is incrementally reduced over time as
needed to add other jobs to the resource’ slist of tasks. If the resource is heavily |oaded, the jobs organize
themsdvesinto alinear sequence, but if it is lightly loaded, the actud order in which jobs are executed is
decided at the moment the resource becomes available, depending on the circumstances that exist a that time.

5. Evaluation

The gpproach to system design and management outlined in this paper is at odds with the centralized top-
down tradition in systems engineering, and potentid users will reasonably want assurance that the gpproach
will work better than conventional methods. The question usudly arisesin terms of the contrast between loca
and globd optimization. Decisonmakers fear that by turning control of a system over to localy autonomous
agents without a central decision-making body, they will lose vaue that could have been captured by amore
globa approach.

The benefits of agent-based approaches over centraized ones are conditional, not absolute. In astable
environment, a centralized gpproach can be optimized to out- perform the initiad efforts of an opportunistic
digtributed system. If the distributed system has appropriate learning capabilities, it will eventudly become as
efficient, dthough a strong enough optimized competitor may kill it before it learns enough. However, modern
market conditions are marked by rapid and unpredictable change, not stability. [Agre 1988] argues more
generdly that change and contingency are inescapable features of the red world. In this case the gppropriate
comparison for systems designersiis not between local and globa optima, but between static and adaptable
systems.

3/5/2001 10:52 AM Copyright © 1996, CEC/ERIM. All Rights Reserved. Page 23

Parunak: “ Go to the Ant”

Managers should eva uate the competing options in a particular case theoreticdly, srategicaly, tacticaly, and
practicaly.

Theoreticdly, there are decentralized mechanisms that can achieve globa coordination. For example,
economigts have long studied how loca decisons can yied globaly reasonable effects, and recently these
indghts have been gpplied to anumber of domains that have not traditionally been considered as economic,
such as network management, manufacturing scheduling and control, and pollution control [Clearwater 1996].
Recent sudies in mathematica ecology and artificid life are another locus of emerging theoreticd insghts.

Strategically, managers must weigh the value of a system that is robust under continua change againgt one that
can achieve atheoretica optimum in a steady-dtate that may never be redized. A company that anticipates a
gable environment may well choose centrdized optimization. One that ingtalls agent-based software does so
because it cannot afford to be taken by surprise.

Tacticdly, the life-cycle software costs are lower for agent-based systems than for centralized ones, because
agents can be modified and maintained individudly at afraction of the cost of opening up alarge, complex
software system. In systems that must be modified frequently, losses due to suboptimal performance can be
more than recovered in reduced system maintenance expenses.

Practicdly, agent-based systems that follow these principles are not untried. [Parunak 1996] and [Parunak
1998] report on anumber of industrid agent-based systems that have been piloted or deployed in regular
operation. The agents in these systems regularly reflect the principles outlined here rather than those of
centralized systems, and their growing acceptance in competitive business environments is evidence of the
benefit they bring their adopters.

6. Summary

Recent trends in software architecture are leading to the widespread use of software agents, or active objects
with initiative. Some researchers design these agents with the same principles that were developed for
monolithic systems. Examination of naturaly occurring agent-based systems suggests some radicdly different
design principles for the next generation of computer systems. While particular circumstances may warrant
deliberate exceptions, in generd:

1. Agents should correspond to things in the problem domain rather than to abstract functions.

2. Agents should be smdl in mass (asmall fraction of the totd system), time (able to forget), and scope
(avoiding globa knowledge and action).

3. Theagent community should be decentrdized, without a sngle point of control or falure.

4. Agents should be neither homogeneous nor incompatible, but diverse. Randomness and repulsion are
important tools for establishing and maintaining this diversty.

5. Agent communities should include a diss pative mechanism to whose flow they can orient themsdves, thus
lesking entropy away from the macro level a which they do useful work.

6. Agents should have ways of caching and sharing whét they learn about their environment, whether a the
leve of the individud, the generationd chain, or the overdl community organization.

7. Agents should plan and execute concurrently rather than sequentialy.
References

3/5/2001 10:52 AM Copyright © 1996, CEC/ERIM. All Rights Reserved. Page 24

Parunak: “ Go to the Ant”

[Agre & Chapman 1987] P.E.Agre and D.Chgpman, “Pengi: An Implementation of a Theory of Activity.”
Proceedings of AAAI-87, 268-272.

[Agre1988] P.E.Agre, “The Dynamic Structure of Everyday Life” Ph.D. Dissertation, Dept. of Computer
Science, Massachusetts Indtitute of Technology.

[Barbuceanu & Fox 1995] M .Barbuceanu and M.Fox, “The Architecture of an Agent Based Infrastructure
for Agile Manufacturing: Extended Abstract.” 1JCAI-95 Workshop on Intelligent Manufacturing.

[Clearwater 1996] S.H.Clearwater, editor, Market-Based Control: A Paradigm for Distributed
Resour ce Allocation. Singapore: World Scientific.

[Deneubourg et a. 1991] J.L.Deneubourg, S.Goss, N.Franks, A.Sendova-Franks, C.Detrain, and
L.Chretien, "The Dynamics of Collective Sorting: Robot-Like Ants and Ant-Like Robots." In [Meyer &
Wilson 1991], 356-365.

[Dijkstra1968] E.W.Dijkgtra, “Go to statement considered harmful.” Comm. ACM 11 (March) 147-148.

[Drogoul 1995] A.Drogoul, “When Ants Play Chess (Or Can Strategies Emerge from Tactical Behaviors?).”
In C.Cagtdfranchi and J.-P.Mller , From Reaction to Cognition: Selected Papers, Fifth European
Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW ' 93), 13-27.

[Ferber 1995] J.Ferber, Les systémes multi-agents: vers une intelligence collective. Paris. InterEditions.

[Ferber & Miller 1996] J.Ferber and J.-P.Mlller, “Influences and Reaections. aModel of Situated
Multiagent Sysems” Proceedings, Second International Conference on Multi-Agent Systems (ICMAS
96), 72-79.

[Fogel 1995] D.B.Fogd, Evolutionary Computation: Toward a New Philosophy of Machine
Intelligence. |EEE Press.

[Fox et d. 1993] M.S.Fox, J.F.Chionglo, and M.Barbuceanu, “The Integrated Supply Chain Management
System.” Working Paper, Enterprise Integration Laboratory, University of Toronto, available at
http:/Aww.ie.utoronto.calEl L/public/iscmrintro.ps .

[Gosset al. 1989] S.Goss, SAAron, J.L.Deneubourg, and J.M.Pastedls, "Sdf-organized Shortcutsin the
Argentine Ant." Naturwissenschaften 76, 579-581.

[Heppner 1990] F.Heppner, "Of Flocks and Chaos." Bioscience 40:6, 429-30.

[Holland 1995] J.H.Halland, Hidden Order: How Adaptation Builds Complexity. Reading: Addison
Wedey.

[Kauffman 93] S.A.Kauffman, The Origins of Order: Self Organization and Selection in Evolution.
Oxford University Press.

[Kelly 1994] K.Kdly, Out of Control: The Rise of Neo-Biological Civilization. Addison-Wedey.

[Korf 1992] R.E.Korf, "A Simple Solution to Pursuit Games." Working Papers of the Eleventh
International Workshop on Distributed Artificial Intelligence.

[Koza1992] J.R.Koza, Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press.

3/5/2001 10:52 AM Copyright © 1996, CEC/ERIM. All Rights Reserved. Page 25

Parunak: “ Go to the Ant”

[Kugler et a. 1990] P.N.Kugler, R.E.Shaw, K.JVincente, and JKinsgla-Shaw, "Inquiry into intentiond
systemsl|: Issuesin ecologica physics” Psychological Research.

[Kugler & Turvey 1987] P.N.Kugler and M. T.Turvey, Information, Natural Law, and the Self-Assembly
of Rhythmic Movement. Lawrence Erlbaum.

[Manda& Campbel 1995] M.Mandaand JA.Campbel, "Designing Good Pursuit Problems as Testbeds
for Digtributed Al: A Novel Application of Genetic Algorithms.” In Cagtdfranchi and Pierre Mller , editors,
From Reaction to Cognition: Selected Paper from the 5" European Workshop on Modeling
Autonomous Agents in a Multi-Agent World, MAAMAW ' 93. Lecture Notesin Artificid Intelligence 957.
Berlin: Springer, 231-252.

[Meyer & Wilson 1991] JA.Meyer and SW.Wilson, From Animals to Animats: Proceedings of the
First International Conference on Smulation of Adaptive Behavior. MIT Press.

[Mitchel 1996] M.Mitchdl, An Introduction to Genetic Algorithms. MIT Press.
[Morley 1995] R.Morley, persona communication.

[Mller 1996] JP.Miiller, The Design of Intelligent Agents. Lecture Notesin Artificid Intelligence 1177.
Berlin: Springer.
[Parunak 1996] H.V.D.Parungk, “Applications of Digtributed Artificid Intelligence in Industry.” In

G.M.P.O’'Hare and N.R.Jemings, editors, Foundations of Distributed Artificial Intelligence. New Y ork:
John Wiley.

[Parunak 1998] H.V.D.Parunak, “Industria and Practical Applications of DAL.” In G.Weiss, editor,
Introduction to Distributed Artificial Intelligence. MIT Press (forthcoming).

[Parunak et a. 1987] H.V.D.Parunak, JKindrick, and B.Irish, “Materid Handling: A conservative Domain
for Neura connectivity and Propagation.” Proceedings of the Sxth National Conference on Artificial
Intelligence, AAAI-87, 307-311.

[Parunak et d. 1997] H.V.D.Parunak, A.D.Baker, and SJ.Clark, “The AARIA Agent Architecture: An
Example of Requirements- Driven Agent-Based System Design.” Proceedings of the First International
Conference on Autonomous Agents (ICAA-97).

[Port & vanGelder 1995] R.F.Port and T.vanGelder, Mind as Motion: Explorations in the Dynamics of
Cognition. Cambridge, MA: MIT Press.

[Preiss 1995] K.Preiss, “Mass, Lean, and Agile as Static and Dynamic Systems.” Agility Forum
Pergpectives on Agility Series, Volume PA95-04, ISBN 1-885166-07-9.

[Resnick 1994] M.Resnick, Turtles, Termites, and Traffic Jams. Explorationsin Massively Parallel
Microworlds. MIT Press.

[Reynolds 1987] C.W.Reynolds, "Flocks, Herds, and Schools: A Distributed Behaviora Modd."
Computer Graphics 21:4 (Jduly), 25-34.

[Smon 1981] H.A.Simon, The Sciences of the Artificial. 2" Edition. Cambridge, MA: MIT Press

[Steels1991] L.Steds, "Toward a Theory of Emergent Functiondity.” In JA.Meyer and SW.Wilson, eds,,
From Animals to Animats. Proceedings of the First International Conference on Smulation of
Adaptive Behavior. MIT Press, 451-461.

3/5/2001 10:52 AM Copyright © 1996, CEC/ERIM. All Rights Reserved. Page 26

Parunak: “ Go to the Ant”

[Tekashina & Watanabe 1996] T.Takashinaand SWatanabe, “ The Locality of Information Gathering in
Multiagent Systems” Proceedings, Second International Conference on Multi-Agent Systems (ICMAS
96), 461.

[Theraulaz et d. 1991] G.Theraulaz, S.Goss, J.Gervet and JL. Deneubourg, "Task Differentiation in Polistes
Wasp Colonies: A Mode for Self-Organizing Groups of Robots.” In [Meyer & Wilson 1991], 346-355.

[vanGelder & Port 1995] “It's About Time: An Overview of the Dynamica Approach to Cognition.” [Port
& vanGelder 1995] 1-44.

3/5/2001 10:52 AM Copyright © 1996, CEC/ERIM. All Rights Reserved. Page 27

	1. Introduction
	2. Theoretical Context
	2.1. Agents
	2.2. Environment
	2.3. Modeling State and Process
	2.4. Coupling

	3. Natural Agent Systems
	3.1. Ants: Path Planning
	3.2. Ants: Brood Sorting
	3.3. Termites: Nest Building
	3.4. Wasps: Task Differentiation
	3.5. Birds and Fish: Flocking
	3.6. Wolves: Surrounding Prey

	4. Engineering Principles
	4.1. Other Lists of Principles
	4.2. Agent Things, not Functions
	4.3. Keep Agents Small
	4.4. Decentralize System Control
	4.5. Support Agent Diversity
	4.6. Provide an Entropy Leak
	4.7. Enable Agents to Share Information
	4.8. Plan and Execute Concurrently

	5. Evaluation
	6. Summary
	References

